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A B S T R A C T

Cybersickness remains a major issue that can severely impact the user’s comfort, per-
formance, and enjoyment of VR. While there are various approaches to combat cy-
bersickness, only a few have been developed for real-time mitigation based on user
biofeedback, and these do not aim to distinguish causal factors and apply mitigation
accordingly. In this paper, we propose a novel real-time cybersickness detection and
mitigation system (CDMS) that leverages a two-stage shallow convolutional network
to detect cybersickness and identify the contributing factors from the user’s electroen-
cephalogram (EEG) activity. Based on the output of the convolutional network, CDMS
adaptively modifies the parameters of the identified factor in the generated virtual en-
vironment to mitigate the onset cybersickness. For this, we conjointly consider three
major content factors of cybersickness: navigation speed, scene complexity, and stereo-
scopic rendering. To train the network, we collected EEG data and self-reports of cy-
bersickness from the subjects by simulating these factors in varying degrees of sever-
ity. For the performance evaluation of CDMS, we conducted a user study comprising
one CDMS session and two different control sessions. The results show that the users
experienced significantly less cybersickness after the CDMS session. Also, CDMS ef-
fectively avoided false positives that could otherwise degrade the VR experience.

1. Introduction

Despite the significant breakthroughs in virtual reality (VR)
technologies, viewers immersed in virtual environments (VEs)
with state-of-the-art setups are still susceptible to experiencing
cybersickness. Previous studies have shown that 30% [1] to
80% [2] of viewers are prone to the ailment. Identifying cy-
bersickness can be challenging due to its various symptoms,
including nausea, cold sweats, dizziness, headache, increased
salivation, and fatigue, which can vary from person to per-
son. Even though the hardware-related limitations, such as lag,

tracking accuracy, and flicker, which were once regarded as
the primary sources of discomfort felt in VEs [3], have been
considerably alleviated with the latest head mounted displays
(HMDs), the sickness experienced remains the most notorious
aspect associated with VR [4, 5]. In this work, we propose
a novel system to mitigate the cybersickness experienced with
VR-HMDs in real-time via the adjustment of VR content fac-
tors based on the user’s brain activity.

Among the myriad of reasons ranging from physical condi-
tions to individual differences [6], the sensory conflict is widely
seen as the leading cause of cybersickness [7]. The sensory con-
flict theory, as outlined by Reason and Brand [8], suggests that
cybersickness results from conflicts between sensory informa-
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tion from different receptors, as well as conflicts between cur-
rent sensory perception and expected sensory patterns, whereby
conflicts between sensory information modulate the perception-
expectation conflict [7, 9]. In VR-HMDs, visual causes domi-
nate cybersickness symptoms due to visual-vestibular conflicts
or conflicts between visual cues [10]. Visual-vestibular con-
flicts occur when there is mismatch between the visually per-
ceived motion and the sense of bodily motion. Further, the vi-
sually perceived motion in a VE can also be discomforting in
relation to scene complexity [11]. Another prevailing cause is
the vergence-accommodation conflict (VAC), which arises due
to the discrepancy between the perceived depth and the focus
depth of the eyes [12]. In stereoscopic VR headsets, a fo-
cused object is displayed on the HMD in very close proximity
to the eyes, but the perceived depth of the object varies with the
stereoscopic rendering parameters [13]. Although most peo-
ple are able to tolerate VAC to some degree [14], excessive
mismatch can contribute to focusing problems, visual fatigue,
and eyestrain, especially with prolonged use. In addition, VAC
can contribute to the visual-vestibular conflict through the con-
fusion of depth perception [10]. Our work focuses on three
VR content factors, namely navigation speed, level of scene
complexity, and stereoscopic rendering parameters, which are
among the major content factors of cybersickness in relation to
the aforementioned conflicts [10, 15, 16]. We propose a frame-
work to mitigate cybersickness through automated manipula-
tion of these factors as needed.

Three methods are frequently used to grade cybersickness.
The most common one is the use of questionnaires. The Sim-
ulator Sickness Questionnaire (SSQ) proposed by Kennedy et
al. [17] is widely utilized in cybersickness studies due to the
similarity of symptoms to simulator sickness [15]. Another
method is the measurement of postural sway, based on the the-
ory that postural imbalance predicts cybersickness [18]. How-
ever, recent findings have contradicted this theory [19, 20] and
some studies have reported results in favor of the sensory con-
flict theory rather than postural instability [21]. Therefore, the
most recent guidelines do not recommend using postural insta-
bility as a criterion or predictor of cybersickness [10]. Lastly,
biofeedback can be used to detect the onset of cybersickness
and grade its severity. Brain activity has been recognized as
a comprehensive biofeedback to detect cybersickness and as-
sociated cognitive load [22–24]. Kim et al. [25] showed that
the indices of autonomic nervous system activity offer reli-
able measures of cybersickness. In this study, we measured
brain activity using EEG signals via a wireless mobile headset
(Emotiv Epoc+), which grants ease of application in addition to
timely biofeedback and multiple spatial components from dif-
ferent electrodes. EEG data has been shown to be useful in
identifying and mitigating cybersickness [26], as it can be mea-
sured without interrupting immersion [27] and provides ample
feedback directly from brain regions linked to cybersickness.

Most studies on cybersickness have focused solely on assess-
ment, with limited research on mitigation. Only a few stud-
ies have explored real-time mitigation based on user biofeed-
back [28, 29], and the approaches used have aimed at detect-
ing cybersickness without distinguishing between causal fac-

tors. Our proposed framework comprises a two-stage neural
network classifier to detect the onset of cybersickness and iden-
tify the dominant content trigger by analyzing the user’s brain
activity during VR immersion. This allows for adaptive ad-
justment of only the relevant content factor parameters in the
presented VE. So that, as the factor is classified using the EEG
signal with a high sampling rate, the VE is modified with low
latency through continuous and smooth tuning of the factoring
parameters to maintain immersion and presence.

The main contributions of this work are as follows:

• We propose the Cybersickness Detection and Mitigation
System (CDMS), which operates during a VR experience
in real-time based on the user’s brain activity in the form
of EEG signals.

• To our knowledge, the proposed approach is the first to
consider three major VR content factors of cybersickness
(navigation speed, scene complexity, and stereoscopic ren-
dering parameters) together for a real-time cybersickness
mitigation system. To this end, CDMS incorporates a
novel VE that simulates these cybersickness factors and
adaptively tunes them based on EEG feedback.

• Two separate neural network models, based on the Shal-
low ConvNet architecture [30], are trained for CDMS. The
first model detects the onset of cybersickness with an over-
all accuracy of 76.26%. The second model classifies the
dominant content factor causing the onset with an overall
accuracy of 81.01%.

• We evaluate the performance of CDMS against two dif-
ferent control schemes. The results show that CDMS
achieves satisfactory performance in mitigating cybersick-
ness without the need for individual calibration.

In the following, we first give an overview of the previous
work in Section 2. Then, Section 3 presents our methodology
for real-time cybersickness mitigation using brain activity re-
sponse, detailing the components of CDMS and data collec-
tion. Section 4 describes our CDMS evaluation experiment
along with the report of the results and their discussion. Fi-
nally, the limitations of our work are outlined in Section 5 and
Section 6 concludes the paper.

2. Previous Work

Cybersickness research has garnered particular attention in
recent years as the use of virtual and augmented reality systems
has shifted from a niche market of experienced users to general
consumers. In Rebenitsch et al.’s review of cybersickness [15],
possible factors considered to cause cybersickness were com-
pared and measurement methods that are used to determine the
severity of symptoms were investigated. Kolasinski et al. [31]
proposed over 40 possible cybersickness factors, which were
categorized under simulator factors, task factors, and individ-
ual factors.

In a recent study analyzing the cybersickness factors and
the corresponding results from the previous work [32], it was
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shown that the hardware/software factors explained 55.3% of
the adjusted variance in a linear model estimating reports of
cybersickness. Aiming to contribute to the development of ef-
fective interventions that can enhance user comfort and reduce
the incidence of cybersickness, we focus this work on three VR
content factors: navigation speed, scene complexity and stereo-
scopic rendering. Having been identified as important factors in
cybersickness [10, 15, 16, 33, 34], all three can be controlled by
software. In addition, tuning content variables when indicated
by user biofeedback can allow to implicitly account for individ-
ual and hardware-related factors while preserving the original
design intentions of the VE as much and as long as possible.

The correlation between navigation speed in a VE and the
severity of cybersickness-related symptoms has been exten-
sively investigated [35, 36]. It has been reported that an in-
creasing navigation speed consistently heightens the severity of
motion sickness but the limits of the correlation between the
two was not firmly established [37]. On the other hand, the
blur effect that occurs when navigation reaches high speeds
was considered to reduce the cybersickness. Hu et al. [38]
presented a real-time and automatic camera control approach
for predicting the magnitude of the discomfort for a presented
scene and camera trajectory. Based on the findings in user ex-
periments, the method was shown to help reduce simulator sick-
ness while maintaining the original navigation and perform bet-
ter than simpler alternatives. Keshavarz et al. [33] reported that
the intensity of vection, the sensation of motion solely based on
visual stimuli, was connected to their speed and also affected by
the crowdedness of the scene, which shows that scene content
also affects cybersickness. Serrano et al. [39] proposed a mo-
tion compression strategy to alleviate vection-induced sickness,
as it reduces sensory conflict. Padmanaban et al. [40] confirmed
that differences in vection resulting from relative stimulus depth
are correlated with motion sickness.

Increased visual realism in the VE has been shown to
strengthen the sense of presence [41], while Jaeger et al. [34]
pointed out that an increase in the detail level of the scene con-
tent caused a rise in SSQ scores, as well. In So et al.’s work [37],
the participants experienced three different complexity levels
achieved by changing the texture of the mappings. Their results
also indicated a similar relationship.

Viewing stereoscopic 3D content rendered with maladjusted
stereoscopic parameters cause VAC and difficulty in focusing,
both of which contribute to visual discomfort leading to cy-
bersickness [14, 42–47]. The interaxial distance of the stereo-
scopic camera pair has been shown to directly affect the amount
of depth perceived in a VE and should be aligned with the user’s
interpupillary distance (IPD). Kolasinski et al. [48] investigated
that cybersickness related symptoms become more severe when
participant’s eye separation and the spacing between the virtual
cameras differs more. Kim et al. [49] presented an experimental
study that can test the empirical impact of IPD misalignment on
motion sickness.

The nature of cybersickness has been studied using various
types of biometric feedback. Kim et al. [2] investigated the
correlation between exposure duration in a VE and cybersick-
ness using EEG, eye blink rate, heart rate, gastric tachyarrhyth-

mia, skin conductance, and respiration rate. The results con-
firmed that cybersickness has a significant correlation with gas-
tric tachyarrhythmia, eye blink rate, heart period, and EEG
delta and beta waves. Another study [29] proposed a real-time
cybersickness detection system with an artificial neural net-
work (NN) whose inputs were electrocardiogram, electroocu-
logram, skin conductance, skin temperature, photoplethysmo-
gram, electrogastrogram, respiration rate, and EEG signals col-
lected from the participants exposed to a VE. The proposed sys-
tem provided a narrow field of view (FOV) and voice feedback
suggesting to reduce navigation speed after the detection of vi-
sual discomfort and the results indicated a significant drop in
SSQ scores.

Compared to alternatives such as functional magnetic reso-
nance imaging (fMRI), electrogastrogram (EGG) and galvanic
skin resistance (GSR), EEG emerges as a promising type of
biofeedback to objectively evaluate cybersickness in terms of
mobility, data richness and price. Chen et al. [50] investigated
the effect of motion sickness with EEG signals using a car sim-
ulator and found that alpha power attenuated in the parietal and
motor areas while theta and delta band power augmented in the
occipital area. Kang et al. [51] suggested a wellness platform
to detect discomfort induced in a stereoscopic 3D environment
by using a support vector machine (SVM) algorithm. The cy-
bersickness was induced only by VAC and the test stimuli was
exposed as random-dot stereograms to the participants through
passive 3DTV. The results demonstrated that the overall aver-
age log spectra of EEG data attenuated following the increase
in disparity level within binocular fusion limits of participants.

Deep learning algorithms have shown superior performance
in the classification of EEG data, owing to their robust fea-
ture extraction capabilities. Kuang et al. [52] proposed a deep
belief network for the classification of motor imagery tasks
with raw EEG data. The classification accuracy of the pro-
posed algorithm exhibited better performance than the SVM
approach. Wilaiprasitporn et al. [53] proposed cascaded CNN
and long short-term memory (CNN-LSTM) and also CNN and
gated recurrent unit (CNN-GRU) networks to extract both spa-
tial and temporal information from raw EEG data for person
identification. While both methods achieved higher accuracy
compared to SVM, CNN-GRU performed better than CNN-
LSTM in terms of short training time and accuracy perfor-
mance. Schirrmeister et al. [30] proposed neural networks in ar-
chitectures with different number of convolution layers to clas-
sify motor imagery by using time series EEG signals as input.
The first was a shallow network with two convolution layers
that structurally modeled the filter bank common spatial pat-
tern (FBCSP) algorithm, the winner of the brain-computer in-
terface (BCI) competition IV 2a and 2b [54]. To extract a vari-
ety of task-related features, another deep learning architecture
with five convolution layers was also proposed. The perfor-
mances of the proposed models were measured by comparing
them with the actual FBCSP algorithm. The results unveiled
that both models provided better classification accuracy in the
motor imagery task than FBCSP. Zhang et al. [55] introduced
parallel and cascaded recurrent CNN architectures for intention
recognition and the results demonstrated that both of the pro-
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Fig. 1: Illustration of our methodology. During the data collection experiments (top half), cybersickness inducing content factors (navigation speed, scene complex-
ity, and stereoscopic rendering) were simulated by the VE generator, in which subjects were immersed, and their responses in terms of brain activity and immediate
self-reports of cybersickness severity were collected to train a two-stage shallow CNN model that first predicts the onset of cybersickness and then, in case of
cybersickness, predicts the causal factor. Afterwards, the trained models are used in the CDMS loop (bottom half) to mitigate cybersickness based on the subjects’
brain activity feedback by updating the VE generator simultaneously to adaptively adjust the parameters of the identified factor.

posed methods performed better than the alternatives in decod-
ing the task-related information.

Previous approaches on mitigation [28] has not gone beyond
the scope of detecting cybersickness and post-processing of the
presented scene in case of detected cybersickness. The only ex-
ception is the study in which FOV is narrowed and the user is
given a voice command to reduce navigation speed [29]. To our
knowledge, the present study is the first work that is aimed at
detecting cybersickness in relation to the three major VR con-
tent factors (speed, complexity and stereo rendering) and miti-
gating by adaptively tuning the parameters of the predicted fac-
tor based on the user’s brain activity response.

3. Methodology

Our methodology consists of two phases, as outlined in
Fig. 1. In the first phase, we collect compatible data to train the
CDMS models with a formal experiment. Then, in the second
phase, the trained models are used in the CDMS loop to miti-
gate cybersickness based on the user’s brain activity feedback

by adaptively adjusting the parameters of the identified factor
to update the VE generator accordingly.

In this section, we first introduce the VE generator and
CDMS, then outline the procedure of the data collection experi-
ment and finally present the training performance of the CDMS
models.

3.1. VE Generator

The VE Generator was developed using the Unity game en-
gine and SteamVR plugin.

The generated VE consists of a dark, wide corridor. During
the VR experience, the user is asked to watch a focal object, a
blue glowing octahedron, as it moves down the corridor on a
winding path and oscillates horizontally, requiring the user to
shift their gaze between left and right. The focal object moves
at the same speed as the trailing camera pair, which provides
the user’s stereoscopic view as it moves down the corridor on a
straight path.

The VE generator can alter the VR experience according to
the factor parameters, which can be specified by either a pa-
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rameter template or CDMS. We first used the VE generator in
the data collection experiment, where we employed a differ-
ent template for each simulated factor, as described in Sec. 3.3.
Then, we used it in the CDMS evaluation experiment (Sec. 4),
where the parameters were altered dynamically by CDMS with
respect to the user’s cybersickness response in the CDMS ses-
sion, while they followed fixed templates in the two control ses-
sions (Fig. 7).

3.2. Cybersickness Detection and Mitigation System (CDMS)

CDMS first pre-processes the user’s EEG signals, which rep-
resent the brain activity in response to the stimuli produced by
the VE generator. The pre-processed EEG feedback is then fed
into the first model for cybersickness detection. As long as no
cybersickness is detected, CDMS will not intervene in the VE
generation, i.e. the generator will continue to produce the VR
experience according to a certain parameter template. However,
when cybersickness is detected to have onset, the EEG feedback
is also fed into the second model for factor classification so that
the parameters of that factor are then gradually adjusted until
CDMS determines that either the brain activity is no longer in-
dicative of cybersickness or the limit for the adjusted parameter
has been reached.

3.2.1. EEG Preprocessor
We used an Emotiv Epoc+ for EEG acquisition. Emotiv

Epoc+ is a mobile EEG headset equipped with 14 saline-based
electrodes and two reference electrodes [56]. It has been used
in several BCI studies mostly owing to its relatively low cost
and high mobility [57–60].

The EEG signals collected with the 14 electrodes were
recorded at a sampling rate of 256 Hz. Bandpass filtering was
applied to the 14-channel signal using a Python script to the
raw data with a causal third-order Butterworth filter to include
the frequency bands of theta (4 to 8Hz), alpha (8 to 12Hz), beta
(12 to 25Hz), and gamma (25 or more). Delta (0.2 to 4Hz)
frequency band was excluded since delta waves occur in deep
sleep states, unconsciousness, or when brain activities are defi-
cient. We did not need to apply notch filtering, because 50Hz-
60Hz notch filters are implemented in the hardware internally.

3.2.2. CDMS Models
The first step in the design of a BCI is to specify the type of

activity to be explored that is apt for the aimed task [61]. In
this regard, the most commonly used ones are event-related-
potentials (ERPs) and oscillatory activities. ERPs are time-
locked voltages that are averaged over the neural responses
elicited by repeated stimuli or events within the same condi-
tion. Oscillatory activities, on the other hand, are associated
with power changes in specific frequency bands and they are
not necessarily synchronized with the stimuli. Because cyber-
sickness is not a transient response to a momentary stimulus
but rather a cumulative effect that arises after a certain time of
exposure to the stimuli, we evaluate the EEG feedback as an
oscillatory activity.

While working with oscillatory activities, the actual response
to be evaluated within the signal can be suppressed by noise and

muscle activity-related artifacts. However, noise and artifacts
elimination processes are not feasible for use in real-time ap-
plications. Artificial NN approaches can provide high general-
ization skills and adaptive applications thanks to their ability to
handle complex data. Hence, NNs can be fed raw data directly
without noise and artifact removal, and feature extraction. To
this end, CNNs can be preferred over recurrent neural networks
(RNNs), such as LSTMs, due to their ability to capture spatial
information, computational efficiency, and reduced risk of over-
fitting. EEG signals are essentially time series data, but CNNs
are able to capture spatial patterns by convolving over local re-
gions of the input signal, which is useful in EEG classification
tasks, where specific frequency bands are associated with differ-
ent brain states or disorders. Additionally, RNNs can become
computationally expensive to train for long EEG recordings,
while CNNs can process local regions in parallel, making them
more efficient.

CDMS uses two separate CNN models in cascade, where the
first one (CDMSNet Stage1, Fig. 2) is for cybersickness de-
tection and the second (CDMSNet Stage2, Fig. 3) is for factor
classification. The architecture of the models is based on the
Shallow ConvNet designed by Schirrmeister et al. [30] to detect
cybersickness. The Shallow ConvNet architecture was inspired
by the FBCSP algorithm [62] to classify oscillatory activities
as it combines all the computational steps in a single network.
Thus, all steps can be optimized jointly. The architecture was
shown to have good performance on oscillatory signal classifi-
cation by extracting log band-power features.

The shallow network consists of two convolutional layers:
one for temporal and one for spatial convolution to deal with
variations in spatial and spectral domains. The bandpass and
the common spatial pattern filtering [63] steps of the FBCSP
algorithm are performed as temporal and spatial convolutions
in this architecture. Convolutions were utilized to generate an
EEG-specific model that extracts discriminative EEG features.
After two convolutional layers, batch normalization is used to
standardize values in the hidden layers of the network to zero
mean and unit variance. A squaring activation function, a mean
pooling, and a logarithmic activation function are applied fol-
lowing batch normalization step to extract log band power fea-
tures. The dropout technique is used to prevent over-fitting.
Lastly, a dense softmax layer is utilized for classification.

We trained both models using the Adam optimization algo-
rithm, which is a variant of stochastic gradient descent designed
to work well with high-dimensional parameters with a learning
rate of 6x10−4 [64]. The training was carried out by minimiz-
ing the categorical cross-entropy loss function. We ran 1000
epochs by setting the batch size to 64 and saving the model
weights, which produced the highest validation accuracy. In
CDMSNet Stage1, where cybersickness is detected, we set the
number of filters used in the first and second convolution layers
to 40 with a kernel size of 1x25 and 14x1 respectively, as shown
in Fig. 2. On the other hand, in CDMSNet Stage2, where the
factor is classified, we set the number of filters used in the first
and second convolution layers to 50 with a kernel size of 1x25
and 14x1 respectively, as shown in Fig. 3. All models were
trained in Tensorflow, using the Keras API.
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Fig. 2: Architecture of CDMSNet Stage1 used for cybersickness detection. Dimensions of inputs/feature maps and convolution/pooling kernels are indicated in the
corresponding fields.
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Fig. 3: Architecture of CDMSNet Stage2 used for factor classification. Convention as in Figure 2.

3.3. Data Collection

To train the CDMS models, we conducted a formal experi-
ment to collect data and processed the recorded data as follows.

3.3.1. Participants
A total of 40 subjects volunteered to attend the training phase

experiments. The data collected from five of them were ex-
cluded as they could not complete the whole set of sessions due
to schedule conflicts. Besides, the data collected from two other
subjects were not included as they did not report any cybersick-
ness throughout the tests. Thus, the final sample consisted of
the data collected from 33 participants (7 females and 26 males,
ages 18 to 42, mean: 23.8).

The motion sickness susceptibility percentile of the sample
was 29.7, which is mild and considered to be appropriate for
testing, as samples skewed toward high or low susceptibility
are both prone to biased results [15]. Overall, the participants
had on average a low level of experience with VR (0.9 average
on a 0-4 scale) and moderate video gaming habits (2.1 average
on a 0-4 scale).

3.3.2. Preliminary Procedure
The experiment took place in a silent room free from external

stimulus. The VE was viewed with an HTC Vive VR setup
with the HMD running at 90Hz refresh rate and 1080x1200px
resolution per eye.

To ascertain eligibility to participate, participants were first
subjected to a stereo-blindness test using a random-dot stere-
ogram. It was also confirmed that none of them had experienced
epileptic seizures before. Then, they were informed about the
general experimental procedure, cybersickness, and their right
to stop the experiment at any time. They were asked to fill out
the consent form and the demographic form, which included

participants’ gaming habits and level of VR experience to iden-
tify possible outlier data more efficiently. Also, susceptibility
to motion sickness was queried using the short motion sickness
susceptibility questionnaire (MSSQ) [65].

Next, they were seated and fitted with the HMD and EEG
headset. The EEG electrodes were placed on the scalp accord-
ing to the 10-20 system [66], as shown in Fig. A1. The Emo-
tiv Cortex API was utilized to ensure reliable signal quality for
each channel. The HMD lenses were adjusted to the partici-
pant’s IPD, which was measured with a digital pupillometer.

Before testing, participants received a tutorial session, to be-
come familiar with the VE and to learn how to report the sever-
ity of discomfort experienced during a stimulus stage. This re-
port is referred to as the discomfort score (DS) and is rated on
a scale from one (indicating “none”) to seven (indicating “ex-
treme”) using the HTC Vive hand controller through the VR
interface (without removing the HMD). During the tutorial, it
was explicitly informed that only a score of 1 indicates the ab-
sence of discomfort and any feeling of discomfort should be
reported with a score of 2 or higher, proportional to its severity.
Accordingly, the CDMS Stage 1 model, which predicts cyber-
sickness, is trained by labeling DS = 1 as no-cybersickness and
DS > 1 as cybersickness cases.

The tutorial was continued until participants declared that
they felt comfortable and proficient with the VE.

3.3.3. Testing Procedure
Following the preliminary procedure, participants proceeded

to testing, in which they experienced the VE in three repeat-
ing sessions. Overall procedure of the data collection testing is
given in Fig. 4.

In a test session, participants experienced each of the three
VR content factors (movement speed, stereoscopic rendering
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Session
Starts

Scene with 10 navigation speed 
stages. DS collected in VR 
after each stage.

Scene with 10 stereoscopic 
rendering stages. DS collected 
in VR after each stage.

Scene with 7 scene complexity 
stages. DS collected in VR after 
each stage.

Break
Change stimulus type

Break
Change stimulus type

Fig. 4: Flowchart of the test procedure for a single session in the data collection experiment. Each participant experienced 3 such sessions, in which the scenes were
ordered in a 3x3 Latin square design.

or scene complexity) in a separate scene of the VE. Accord-
ingly, each factor was introduced in a predefined set of stimulus
stages with breaks between them. Participants experienced ten
stages of navigation speed, seven stages of scene complexity,
and ten sets of stereoscopic rendering parameters, as detailed
below. Each stimulus stage took 10 seconds and participants
were then asked to rate their DS. After the DS was registered,
the application proceeded to the next stage according to the pre-
set order when participants pressed the designated hand con-
troller button indicating readiness to continue.

A scene ended when all stages of the simulated factor were
completed. Without removing the headsets, participants were
then allowed to rest their eyes and recollect themselves for
a minimum of 30 seconds while the HMD displayed a black
screen.

Having finished a session by concluding all three scenes, the
participants were assisted to remove the headsets. Then, they
were requested to rest their eyes for at least three minutes and
instructed that they could start the next session when they felt
ready afterwards. Upon their indication, they were refitted with
the headsets and immersed in the VE for another session.

When participants were exposed to the VE for three such ses-
sions, the experiment was finalized. Across the sessions, the
scenes were presented in a randomized order with a 3x3 Latin
square design to offset possible carry-over effects between dif-
ferent factors. The scene details are provided below.

Navigation Speed. For the experiment, the speed of the stereo-
scopic camera pair was set to 10 different navigation speed
stages (1.2, 2.4, 4.8, 9.6, 14.4, 19.2, 28.8, 38.4, 57.6, and 76.8
meters/sec for the consecutive stages). Particular to this scene,
red arrows pointing forward were added to the surface textures
in order to foster the sense of vection. Also, an emission shader
was applied to these arrows to make them stand out from the
focal object.

Stereoscopic Rendering Parameters. The most crucial step
in generating a stereoscopic 3D image is the adjustment of the
stereoscopic rendering parameters. To this end, the two princi-
pal stereoscopic rendering parameters are the convergence dis-
tance and the interaxial distance. Convergence distance defines
the separation between the camera plane and the focus plane,
where the image for the left/right cameras are identical, while
interaxial distance simply defines the distance between the two
cameras on the camera plane. By changing these two param-
eters from the default values held constant by the application
programming interface of the HTC Vive (and other consumer

grade VR-HMDs) using projection manipulations by Avan et
al. [67], the generator produced stereoscopic image sequences
with different disparity settings, resulting in altered perceived
depth compositions.

Table 1: Parameters used through the
stages of stereoscopic rendering scene.
The bottom row gives the values used
with the stages of speed and scene com-
plexity.

Cue
Stage

Interaxial
Distance

(cm)

Convergence
Distance

(m)

Stage 1 6.00 0.80
Stage 2 6.00 1.20
Stage 3 6.00 1.60
Stage 4 6.00 2.00
Stage 5 9.00 2.00
Stage 6 12.00 2.00
Stage 7 15.00 2.00
Stage 8 15.00 1.80
Stage 9 15.00 1.40
Stage 10 15.00 1.00

Other
Scenes

IPD 1.50

In the experiment, only
one of the stereoscopic
rendering parameters
was changed between
consecutive stages. 10
different settings of
interaxial-distance and
convergence distance
were tested, as given
in Table 1. The copies
of the focal object, in
randomly assigned colors
of red, green and blue,
were scattered in the
background to increase
the number of depth
cues and they were kept
slightly smaller than the
focal object.

Scene Complexity. We tested scene complexity in seven stages
with increasing intensity. In the first stage, there was only the
focal object in the empty corridor. The second stage had 84
copies of the focal object, which were added along the corri-
dor edges and oscillating vertically in a sinusoidal pattern. 171
more copies were added in the third stage. These additional
copies were placed in three additional lines along the corridor
with increasing density towards the end. In the fourth stage,
the existing copies were colored randomly in red, green, or
blue. The fifth stage introduced particle emitters attached to
the copies. These emitters were directed towards the central
path that the camera pair followed and each generated 20 par-
ticles per second matching the color of the copy object. In the
sixth stage, the particles were given HDR textures making them
brighter, the emission rate was raised to 50 particles per second
and also a particle force field was used to propel the particles
further into the camera view. In the final stage, the particle
brightness was boosted and the emission rate was further in-
creased to 75 particles per second, thus having particles occupy
most of the field of view at severe discomfort.

In the scenes simulating scene complexity and stereoscopic
rendering parameters, navigation speed remained at its mini-
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mum (1.2 m/s) as in the first stage of the navigation speed
scene. Similarly, the stereoscopic rendering parameters were
kept fixed (by setting interaxial distance to the IPD and the
convergence distance to 1.5 m) in the simulation of navigation
speed and scene complexity. The supplemental video material
demonstrates the complete sequences of all stimulus stages for
each VR content factor simulated in the data collection exper-
iment consecutively (without the DS evaluation breaks in be-
tween).

Charts showing the per-stage average DS response for each
factor throughout the data collection experiment are given in
Fig. A2 of the Appendix. For a detailed analysis of the collected
data in relation to the simulated stimuli and time spent in VR,
we refer the reader to [68].

3.3.4. Data Processing
In order to use the 14-channel time-series EEG recordings

as input in the model training, EEG data were partitioned in
batches per session by factor type using the EEGLAB tool-
box [69] in Matlab. Ten seconds of EEG data recorded per
stimulus stage was reduced to eight seconds by trimming one-
second portions from both ends. This way, possible synchro-
nization problems and delays were eliminated. Next, the sliding
window divided eight seconds of data into one-second pieces.
The partitioned EEG data was labeled with corresponding fac-
tor type and DS.

To prevent data imbalance issues and ensure that the models
are not overexposed to dominant classes, we applied data aug-
mentation using overlapped partitioning of consecutive sliding
windows in different ratios between label types. The data la-
beled with cybersickness (i.e., those with reported DS of 2 and
above) were partitioned with a 50% overlap between consecu-
tive steps of the sliding window. To train the factor classifica-
tion model, the overlap between consecutive steps of the sliding
window was set at 75% for partitioning the navigation speed
tests’ data; and 25% for partitioning the scene complexity tests’
data. The stereoscopic rendering tests’ data were partitioned
without overlap. After partitioning, the data were labeled us-
ing the source data labels and scaled using the min-max of the
current chunk.

3.4. Training Performance of the CDMS Models

The prediction accuracies of CDMSNet Stage 1 and Stage
2 were evaluated against EEGNet and DeepConvNet, both
of which yield state-of-the-art decoding accuracies, especially
for the motor imaginary task classification. EEGNet, a com-
pact CNN for EEG-based BCIs, was proposed by Lawhern et

Table 2: Overall decoding accuracies for cybersickness detection (on the left)
and factor classification (on the right), computed by averaging over the accura-
cies obtained with 5-fold cross-validation training.

Cybersickness Detection

EEGNET4.2 63.87%
EEGNET8.2 64.82%
Deep ConvNet 69.01%
CDMSNet Stage1 76.26%

Factor Classification

EEGNET4.2 53.47%
EEGNET8.2 64.49%
Deep ConvNet 72.80%
CDMSNet Stage2 81.01%

al. [70]. The depthwise and separable convolutions were uti-
lized to construct a general-purpose architecture that enables ef-
ficient feature extraction. We analyzed the performances of two
different configurations of the EEGNet architecture by varying
the number of filters. EEGNET4.2 has 4 temporal filters and
2 spatial filters for each temporal filter, while EEGNET8.2 has
8 temporal filters and 2 spatial filters for each temporal filter.
The DeepConvNet architecture was proposed by Schirrmeis-
ter et al. [30] to be a general-purpose architecture for BCIs,
unlike the Shallow ConvNet architecture, which was explicitly
designed to decode oscillatory-based tasks.

For the analysis, we conducted a fivefold cross-validation.
The data collected during the model training phase experiments
was divided into five subsets of equal size and the models were
trained in five iterations using one of the subsets (20%) as the
test set and the rest as the training set in each iteration. Table 2
compares the classification accuracies of CDMSNet Stage1 and
Stage2 models against the alternatives. The results show that
both CDMS models outperform the alternatives, despite their
shallower architecture. This is likely due to their specific design
for extracting log band power features.

The performances of both models averaged over five folds
are given in Table 3 in terms of precision, recall, and F-measure.
The performance of CDMSNet Stage1 reached an overall ac-
curacy of 76.26%, while CDMSNet Stage2 achieved 81.01%
overall accuracy. The classification precision of each factor in
CDMSNet Stage2 for each fold is given in Fig. 5c. The con-
fusion matrices are provided in Fig. A3 of the Appendix. The
results reveal that the precision of the classification on stereo
rendering parameters is superior to others.

It is crucial to designate the operational frequency band effec-
tively in the classification of oscillatory EEG signals. Chuang
et al. [71] demonstrated that the reported levels of motion sick-
ness were positively correlated with gamma and alpha bands’
activation. Khaitami et al. [72] investigated the relationship
between cybersickness and gamma-band deviation and found
an increase in gamma deviation in the EEG signal compared
to the baseline when participants were immersed in a VE. Ac-
cordingly, our CDMSNet Stage1 and CDMSNet Stage2 mod-
els were trained by including the gamma band. To better un-
derstand the gamma band contribution, the models were also
trained by excluding it, and the classification performances of
both cases were compared. The results revealed that the inclu-
sion of the gamma band in the model input enables better EEG
decoding accuracy, as shown in Fig. 5a and Fig. 5b.

Table 3: Detailed results for cybersickness detection with CDMSNet Stage1
model (on the left) and for factor classification with CDMSNet Stage2 model
(on the right). The metrics were computed by averaging over all results obtained
with 5-fold cross validation training.

precision recall f1

No-Cybersickness 0.77 0.67 0.72

Cybersickness 0.76 0.84 0.80

Overall Accuracy 76.26%

precision recall f1

Complexity 0.77 0.70 0.73

Stereo Rendering 0.86 0.84 0.85

Speed 0.75 0.87 0.80

Overall Accuracy 81.01%
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Fig. 5: Plots illustrating the decoding accuracies of (a) CDMSNet Stage1 and (b) CDMSNet Stage2 trained with EEG data excluding and including the gamma band
(c) along with the accuracy of CDMSNet Stage2 for each class.

4. CDMS Evaluation

To evaluate the efficacy of CDMS in real-time cybersick-
ness mitigation, we conducted an experiment consisting of one
CDMS session and two control sessions (Control 1 and 2). In
this section, we first describe the details of the experiment and
then report and discuss the obtained results.

4.1. Participants

22 subjects, who had not participated in the data collection
experiment, volunteered to take part in the CDMS evaluation
experiment. One volunteer was not admitted in the experiment
for failing the stereo blindness test. Another volunteer with-
drew from the experiment after one session because of experi-
encing severe cybersickness. Hence, the tests were concluded
with 20 participants (all males of ages between 22 and 33, av-
erage: 28.1). Their average MSSQ percentile was 29.1, which
is close to the moderate level as the sample of the data collec-
tion experiment. On average, they had little experience with
VR (0.9 average) and moderate gaming habits (1.1 average).

4.2. Procedure

The overall test procedure of the evaluation experiment is
given in Fig. 6, which was preceded by the same preliminary
procedure described in Sec. 3.3.2.

During testing, each participant experienced the CDMS ses-
sion and the two control sessions (Control 1 and Control 2) in
a randomized order. Each session lasted 105 seconds. Between
the sessions, participants were asked to rest for at least three
minutes and then resume when they felt ready. Participants
were not informed of the CDMS mechanism or the order of
the sessions.

In the Control 1 session, the parameters were changed ac-
cording to the template T1 (Fig.7a), which starts with moderate

speed, scene complexity, and stereoscopic rendering parame-
ters. In T1, each parameter is gradually intensified separately.
After a parameter is changed, it is returned to its initial level
and then a five-second interval is observed before intensifying
another parameter. The parameter levels are adjusted to fit the
specific trends shown in Fig. 7a. This ensures smoother transi-
tions and maintains a sense of presence.

In the Control 2 session, the parameters followed the tem-
plate T2 (Fig.7a), which has a similar pattern to T1 at the begin-
ning. However, in T2, once a parameter is changed to a severe
level, it remains there until the end of the session, as shown in
Fig. 7a. The intention was to induce a more intense level of
accumulated cybersickness by introducing multiple factors that
invoke cybersickness at severe levels in tandem by the end of
the session.

In the CDMS session, the factor parameters adhered to the T2
template as long as CDMS did not detect cybersickness. That
is, when CDMS predicted an onset of cybersickness, it also pre-
dicted the causal factor and the parameters related to that factor
were gradually adjusted by CDMS. This was done by applying
changes to the associated parameters in constant steps for 10
seconds, so that at the end of 10 seconds the parameters were
returned to three levels before their current level on the curve
specified by the T2 template. If the CDMS determined that the
EEG response no longer indicated cybersickness or had already
reached the limit for the set parameter, i.e., the initial value on
the curve, it stopped the change before the 10 seconds were up.
Overall, the changes in the factor parameters during a CDMS
session reflected the curves of T2 together with the dynamic
adaptive updates applied by the CDMS based on the partici-
pant’s brain activity feedback.

The participants were asked to fill out the SSQ at the begin-
ning and the end of each session. Also, they were asked to
report DS after each session.

Session #1 Session #2 Session #3

User reports
 SSQ

User reports
 SSQ

User reports
 SSQ

User reports 
SSQ and DS

User reports  
SSQ and DS

User reports  
SSQ and DS

Resting Period Resting Period

Fig. 6: Flowchart of the test procedure for a complete set of sessions in the CDMS evaluation experiment. The Control 1, Control 2, and CDMS sessions were
presented in #1, #2 and #3 slots in randomized order.
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Fig. 7: Plots illustrating the changes in the factor parameters during the CDMS evaluation experiment: (a) according to the common templates in Control 1 and
Control 2 sessions, and (b) as averaged over the participants who reported cybersickness in the CDMS session (c) as averaged over the participants who did not
report cybersickness in the CDMS session.

4.3. Results and Discussion
The performance of CDMS was evaluated using changes in

SSQ responses collected before and after each session (i.e.,
delta SSQ), DS responses collected after each session, and
temporal changes in the factor parameters across the sessions.
Three of the participants did not report cybersickness in any of
the sessions, as shown in Fig. 8. Therefore, their reports were
excluded from the analyses. The statistical analyses were car-
ried out using the JASP tool [73].

Instead of considering only the post-session SSQ scores,
delta SSQ scores were taken into account to eliminate the con-
tribution of the varying levels of initial states of the participants
and to isolate the effects of the experienced stimuli. An SSQ re-
sponse gives out a total SSQ score (SSQ-T) in addition to three
different sub-scores in nausea (SSQ-N), disorientation (SSQ-
D), and oculomotor discomfort (SSQ-O). The averages for the
post-session DS and the per-session delta SSQ scores are shown
in Fig. 9.

While both parameter templates used in the evaluation were
aimed to elicit at least a moderate level of cybersickness

through the sessions, T2 was specifically designed to induce
a higher level of cybersickness than T1 by driving all parame-
ters to their most severe levels one by one and maintaining them
at that level until the session’s end. All indicators of reported
cybersickness show that participants experienced the most in-
tense cybersickness during the Control 2 session, as intended. It
is also evident that participants experienced less cybersickness
during the CDMS session than in either control session, even
though the factor parameters applied in the CDMS session fol-
lowed the more severe template (T2) and CDMS intervened in
this template in gradual updates only during the periods when
it detected cybersickness.

For further investigation, DS and delta SSQ scores were sub-
jected to a one way repeated measures analysis of variance
(RMANOVA) test to compare the differences between the lev-
els of experienced cybersickness. RMANOVA rejected the null
hypothesis for all scores, as shown in Table 4, showing that the
experiences, exhibited by all considered scores, were signifi-
cantly different between the three sessions. Further, a post-hoc
test was applied to investigate pairwise comparisons between
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Fig. 8: Plot illustrating the individual changes in SSQ-Total scores between the beginning and the end of each session for all participants.
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Fig. 9: Plots showing the ranges (blue bars) and the averages (orange dots) for the per-session changes in SSQ scores and end-of-session DS responses as averaged
over the participants who experienced cybersickness.

the three sessions using the Holm correction for all scores. The
pairwise comparison revealed that there is a significant differ-
ence between the Control 1, the Control 2, and the CDMS ses-
sions in all paired samples of SSQ-T, SSQ-N, SSQ-O, SSQ-D
and DS responses. The results are given in Table A1 of the
Appendix. It is seen that the sessions had a statistically signif-
icant effect on cybersickness, suggesting that the experimental
design, including the procedurally generated VE, were properly
suited for our goals.

Participants P2, P16 and P18 (Fig. 8), who reported all SSQ
responses as 0 and all DS responses as 1 out of 7 were consid-
ered to have reported no cybersickness. The temporal changes
in factor parameters averaged across the records of these partic-
ipants in the CDMS session are shown in Fig. 7c. The curves
demonstrate minimal intervention by CDMS, as evidenced by
the similarity of the curves to the T2 template. That is, CDMS
made only minor updates for these participants, which did not
significantly alter the parameters. This suggests that CDMS
can sustain the intended VR experience, including presence and
immersion, by avoiding false positives while maintaining suffi-
cient performance.

In contrast, Fig. 7b shows the temporal changes in the param-
eters during the CDMS session, averaged over the records of
the participants who reported cybersickness. The curves high-
light the differences in comparison to T2 resulting from CDMS
interventions due to detected cybersickness. The data shows
that CDMS intervened the most with the stereoscopic render-
ing parameters and the least with navigation speed. This sug-
gests that the experienced cybersickness was primarily caused
by the stereoscopic rendering parameters and least by naviga-
tion speed. It is also seen that the CDMS interventions pre-

Table 4: Average changes in the SSQ subscores and DS per session along with
the RMANOVA test results.

Control 1

(M ± SD)

Control 2

(M ± SD)

CDMS

(M ± SD)
Significance

Change in SSQ-N

Score
25.2 ± 8.8 46.0 ± 8.4 19.6 ± 6.2

F2,32 = 125.209

p < .001

Change is SSQ-O

Score
42.3 ± 21.2 78.4 ± 18.7 32.5 ± 6.9

F2,32 = 82.447

p < .001

Change in SSQ-D

Score
35.2 ± 17.1 67.1 ± 21.5 19.6 ± 9.9

F2,32 = 56.485

p < .001

Change in SSQ-T

Score
40.2 ± 13.1 74.8 ± 16.1 29.0 ± 5.6

F2,32 = 111.331

p < .001

Discomfort Score 3.8 ± 0.8 5.3 ± 1.1 3.0 ± 0.7
F2,32 = 97.567

p < .001

vented the complexity and stereoscopic rendering parameters
from reaching severe levels by the session’s end, instead main-
taining them at moderate levels. Navigation speed was min-
imally intervened with until it reached high levels, at which
point it was gradually reduced based on the received brain activ-
ity feedback. Altogether, the average curves obtained support
the prior finding that the CDMS session resulted in the lowest
overall cybersickness.

The individual parameter curves experienced by the partic-
ipants during the CDMS session are provided in Fig. A4 and
A5 of the Appendix, for those who reported cybersickness and
those who did not, respectively.

Finally, we conducted a correlation analysis to further eval-
uate the impact of the CDMS on the factor parameters. The
parameters recorded during the CDMS session were averaged
for each participant and tested for correlation with their cyber-
sickness reports (the delta SSQ-T score and the average of the
DS responses) for the CDMS session and their susceptibility to
motion sickness (MSSQ percentile). The analysis also exam-
ined the correlations between the two self-reported outcomes
and susceptibility to motion sickness. The results are illustrated
in Fig. 10. A low average for the camera convergence distance
or a high average for any other factor parameter indicates min-
imal or no intervention by CDMS in that particular parame-
ter. Such that, participants with lower SSQ-T change tend to
have higher averages in the factor parameters (and lower for the
converge distance), as CDMS observed less cybersickness and
made fewer interventions to produce milder parameters during
their sessions. This finding aligns with the observation that
changes in SSQ-T are positively correlated with convergence
distance and negatively correlated with interaxial distance, par-
ticle rate, and the number of rendered objects. Besides, there
is a low correlation between the delta SSQ-T score and nav-
igation speed, which is consistent with the results of the data
collection experiment, indicating that the participants experi-
enced less cybersickness related to speed. The strong negative
correlation between the MSSQ percentile and recorded naviga-
tion speed suggests that MSSQ could serve as a predictor of the
navigation speed -related cybersickness experienced in a VE.
Furthermore, there is a strong positive correlation between the
delta SSQ-T and DS, which measures immediate discomfort.
This implies that single-item queries, by which the user is in-
terrupted minimally, can be an efficient measure for assessing
cybersickness severity.
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Fig. 10: Plots showing the correlations between the MSSQ percentile, delta SSQ-T score, DS, and the averages of the factor parameters over the CDMS session.

5. Limitations and Future Work

The brain feedback was analyzed in terms of oscillatory ac-
tivities, as per the restrictions in Section 3.2.2. Although this
scheme yielded rich data on the vision-related brain response
to simulated VR stimuli, oscillatory activities are vulnerable to
noise and other artifacts, which can limit their accuracy. Fur-
thermore, the EEG data collected during free-viewing was sub-
ject to additional artifacts caused by participants’ head and eye
movements. To address these challenges, a two-stage convolu-
tional network architecture was used. However, it is possible
that their influence was not completely remedied.

The experimental design was subject to certain limitations,
as well. During data collection, while the order of the scenes
was counterbalanced, the stages within each scene were fixed.
This aspect was based on previous work on cybersickness pre-
diction [74, 75], wherein cybersickness reports were collected
at frequent intervals while the same videos (i.e., lengthy se-
quences of exactly the same stimuli) were presented to all par-
ticipants. Similarly, there have been other studies in which
cybersickness reports were collected using a series of short-
term stimuli [76–78]. As evidenced by participants’ responses,
our 10-second stages were effective in inducing cybersickness.
However, the presentation of stages in a fixed order can be re-
garded as restricting. Furthermore, the VE generator is highly
customized for CDMS, resulting in a more abstract environ-
ment than those encountered in typical VR applications. Nev-
ertheless, the VE was effective in allowing us to capture the ef-
fects of each simulated factor in isolation and to mitigate cyber-
sickness by automatically adjusting the factor parameters based
on the CDMS feedback. It should be noted, however, that some
scene elements used in the navigation speed trials to induce op-
tic flow, such as the red arrows, may have impeded the intended
outcome at higher speeds by inducing wagon-wheel illusions.
These factors may have reduced the perceived speed of self-
motion and contributed to the relatively smaller effect of speed
on the experienced cybersickness.

Our study provides a foundation for future research on cyber-
sickness mitigation by experimenting with cybersickness fac-

tors in conjunction. To further our efforts, future work would
benefit from using more typical VEs with experimental designs
that are less susceptible to order effects. Once the tuning of
the investigated factor content parameters is achieved in the tar-
geted VEs, extending our approach to them will be straight-
forward. Using a subset of channels by analyzing the effects
of EEG feedback from different regions of the scalp on online
mitigation performance could also be a valuable direction for
future research [68, 79].

A final limitation to note is the sample demographics. Al-
though the samples for the data collection and CDMS evalua-
tion experiments had similar age statistics, MSSQ percentiles,
and video gaming habits, our CDMS evaluation experiment
only included male participants. Conducting future studies with
larger and more balanced samples would provide a broader un-
derstanding of cybersickness in relation to the factors under
consideration.

6. Conclusion

In this study, we proposed an EEG-based system called
CDMS for simultaneous detection and mitigation of the cyber-
sickness experienced by VR-HMD users. We conducted our
study by focusing on navigation speed, scene complexity, and
stereoscopic rendering. By varying these three factors, which
are among the major content factors of cybersickness, we in-
duced cybersickness in the data collection experiment. A sup-
plementary video demonstrating a complete run of the three
scenes used in this experiment is provided. The EEG data col-
lected from the participants was labeled with their correspond-
ing scores of experienced cybersickness. After applying data
augmentation, the finalized dataset was used to train a two-stage
shallow CNN model for detecting cybersickness and classifying
the causal factor. The models reached decoding accuracies of
76.26% and 81.01%, respectively, outperforming both EEGNet
and the DeepConvNet architectures. The training results also
showed that the gamma band’s inclusion increases accuracy by
a considerable margin.
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To assess the online performance of CDMS, an evaluation
study was conducted with a different group of participants. The
participants were exposed to two control sessions in addition to
the session in which CDMS was used. The results showed that
CDMS was successful in mitigating cybersickness, despite the
challenges posed by the cross-subject variability in the experi-
ment. The outcomes also suggest that CDMS can help maintain
immersion and presence by providing non-invasive cybersick-
ness mitigation with sufficient performance.

We have made all user feedback, including processed EEG
data and self-reports of experienced cybersickness, collected
from both the data collection experiment and the CDMS evalu-
ation experiment, available on the paper website along with the
code used to process the data.

To our knowledge, this is the first attempt to mitigate cy-
bersickness by distinguishing for multiple content factors con-
jointly and tuning the parameters of the predicted causal fac-
tor in real-time based on the user’s biofeedback. However, as
indicated in the previous section, our study was realized with
certain limitations. Future work extending our approach by ad-
dressing these limitations can help to achieve further user com-
fort by improved cybersickness mitigation and to provide pro-
longed VR-HMD experiences.
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Appendix

Fig. A1: Electrode placement locations of the EEG headset on the scalp. The
upper part shows the front of the head. CMS/DRL references are located at
P3/P4. Adapted from [56].
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Table A1: Holm post-hoc test results.

Measure Test Pair t pholm

SSQ-N

T1 T2 -11.824 < 0.001

T1 CDMS 3.196 0.003

T2 CDMS 15.020 < 0.001

SSQ-O

T1 T2 -9.588 < 0.001

T1 CDMS 2.604 0.014

T2 CDMS 12.192 < 0.001

SSQ-D

T1 T2 -7.009 < 0.001

T1 CDMS 3.415 0.002

T2 CDMS 10.424 < 0.001

SSQ-T

T1 T2 -10.805 < 0.001

T1 CDMS 3.510 < 0.001

T2 CDMS 14.315 < 0.001

DS

T1 T2 -9.145 < 0.001

T1 CDMS 4.572 < 0.001

T2 CDMS 13.717 < 0.001
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Fig. A4: Plots showing the individual curves of the factor parameters for the
participants who experienced cybersickness.
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