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Abstract

Robust visual tracking plays a vital role in many areas such as autonomous
cars, surveillance and robotics. Recent trackers were shown to achieve ade-
quate results under normal tracking scenarios with clear weather condition,
standard camera setups and lighting conditions. Yet, the performance of
these trackers, whether they are correlation filter-based or learning-based,
degrade under adverse weather conditions. The lack of videos with such
weather conditions, in the available visual object tracking datasets, is the
prime issue behind the low performance of the learning-based tracking algo-
rithms. In this work, we provide a new person tracking dataset of real-world
sequences (PTAW172Real) captured under foggy, rainy and snowy weather
conditions to assess the performance of the current trackers. We also intro-
duce a novel person tracking dataset of synthetic sequences (PTAW217Synth)
procedurally generated by our NOVA framework spanning the same weather
conditions in varying severity to mitigate the problem of data scarcity. Our
experimental results demonstrate that the performances of the state-of-the-
art deep trackers under adverse weather conditions can be boosted when the
available real training sequences are complemented with our synthetically
generated dataset during training.
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1. Introduction

Recently, convolutional neural networks (CNN) have shown a remarkable
progress in various computer vision tasks such as object detection [1], object
tracking [2], semantic segmentation [3], depth estimation [4], optical flow
estimation [5], and person Re-Identification (ReID) [6]. While utilizing CNNs
for computer vision field can improve both generalizability and accuracy,
CNNs have an intrinsic restriction in terms of the data needed for training.
Usually, better performance comes with deeper and larger CNNs which give
a higher degree of non-linearity and more freedom in solving complex tasks.
However, that introduces more variables for tuning. Unfortunately, training
such models requires more data and more powerful computing devices. The
introduction of cheap general purpose graphics processing units (GPGPUs)
alleviated hardware limitation. However, the scarcity of large-scale datasets
for training supervised learning methods remains as the main bottleneck for
many computer vision tasks, especially, the ones that require enormous efforts
for annotation, such as semantic segmentation and visual object tracking.
Besides, for some others such as optical flow and depth estimation, it becomes
extremely hard or even impossible to provide large-scale annotated datasets.

In addition to the need for large scale datasets, another requirement is a
high level of diversity to allow deep learning models to work well in practice
and not overfit to certain attributes. However, obtaining suitable datasets
that are large and diverse from real world is not a simple task. Thus, small
scale and mostly normal attributes tend to be the main features of the avail-
able datasets. Consequently, most of the available datasets tend to focus on
normal scenarios under typical light conditions and camera parameters. The
first reason behind this is the assumption that the computer vision model
is going to be tested under these normal circumstances such as clear sky,
optimal lighting, and standard recording conditions. While the second is the
difficulty of obtaining datasets under rare conditions. Unfortunately, train-
ing computer vision models under these normal conditions causes unexpected
behaviour or complete failure in adverse conditions.

Visual object tracking (VOT) is one of the major tasks in computer vi-
sion field that is essential for higher-level tasks such as pedestrian detection,
action recognition, or trajectory estimation. Therefore, it is vital for many
real-world systems such as self-driving vehicles, automated retail or visual
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surveillance. Failure of such systems under adverse conditions can lead to
property damages or human injuries.

In this work, we focus on person tracking under adverse weather con-
ditions such as snowy, rainy and foggy weather conditions. Thereby, to
assess the performance of the state-of-the-art trackers in person tracking
in video feeds taken under such adverse conditions, we collect a novel real
dataset, PTAW172Real, that consists of 172 videos featuring weather with
heavy snow, rain or fog. Our experiments expose the poor performance of
the state-of-the-art trackers when tested on PTAW172Real and this can be
linked to the limited number of videos taken under adverse weather condi-
tions in the current VOT datasets that these trackers were trained with. We
offer a remedy for the lack of data availability by using our NOVA engine
to generate a synthetic dataset, PTAW217Synth, that provides diverse and
rich training sequences under adverse weather conditions. To the best of our
knowledge, no work has been done to validate the usability of synthetic data
for person tracking under adverse weather conditions. In this work, we show
that using synthetic data, we can bridge the aforementioned gap and im-
prove the performance of the learning-based trackers under adverse weather
conditions.

Our main contributions in this paper can be summarized as follows:

• We present a novel real dataset called PTAW172Real for visual object
tracking under adverse weather conditions. The dataset contains 172
videos manually annotated covering snowy, rainy and foggy weather
conditions.

• We highlight the poor performance of the state-of-the-art trackers un-
der adverse weather conditions with PTAW172Real.

• Using our NOVA rendering engine, we procedurally generate a new
dataset called PTAW217Synth made up of synthetic sequences under
adverse weather conditions complete with automatically-generated per-
frame annotations including bounding boxes at pixel-level accuracy,
occlusion state and other relevant metadata such as time-of-day and
camera type. The dataset consists of 217 sequences for person tracking
spanning the three adverse weather conditions.

• We show that fine-tuning the pre-trained models on our synthetic dataset
PTAW217Synth is able to improve the performance of the deep track-
ers. Similarly, we also show that training from scratch on only our
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synthetic training dataset can achieve comparable results to training
on large scale real datasets.

2. Related Work

Despite the fact that deploying synthetic data in computer vision field has
just started recently, a number of works investigated the usability of synthetic
data for different computer vision tasks. In general, synthetic data can be
employed for both training and testing purposes. For training, they can be
used as the only training data, or to augment the real ones. It is possible to
apply synthetic data for pre-training or fine-tuning learning models as well.

One work [7] investigated the usability of synthetic data for instance
segmentation and object detection. They concluded that training on both
synthetic and real data achieves better results as compared to training on a
small set of real data. At the same time, they show that fine-tuning on their
augmented data can achieve even better results. Similarly, Cheung et al. [8]
proved that synthetic data can be used with real data to improve accuracy
for crowded scene understanding. They show that using their generated
synthetic dataset, LCrowdV, with real datasets can improve the accuracy as
compared to using these real datasets alone.

Varol et al. [9] demonstrated the usability of synthetic data for human
depth estimation and part segmentation. They prove that training on syn-
thetic and real images increases the accuracy for semantic segmentation and
reduces the root-mean-squared-error for depth estimation. In the same way,
Barbosa et al. [10] extensively studied the advantages of using their gener-
ated synthetic dataset, SOMAset, for the task of person ReID. They show
that pre-training on their synthetic dataset then fine-tuning on real datasets
achieves better results as compared to training only on real datasets.

Under the scope of visual object tracking, Gaidon et al. [11] provided a
detailed analysis on the advantages of using synthetic data for the task of
multi-object tracking. They show that training on their synthetic dataset
then fine-tuning on real datasets achieves the best results as compared to
only training on synthetic or real datasets.

Similarly, Zhang et al. [12] used image-to-image translation method to
generate synthetic thermal infrared tracking videos using the RGB ones.
They show that training on their synthetic videos then fine-tuning on real
ones or training on both synthetic and real videos achieve better results as
compared to training on the available small scale real datasets.
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Figure 1: On the left half, sample frames from the currently-available real (top-left quarter)
[13, 14, 15, 16] and synthetic (bottom-left quarter) [17, 18, 19, 11] visual object tracking
datasets demonstrate the lack of adverse weather conditions. The right half presents
sample frames from sequences spanning raining, foggy and snowy weather conditions from
PTAW172Real (top-right quarter) and PTAW217Synth (bottom-right quarter) datasets
that we introduce in this work.

Similar to the previously mentioned works, we also investigate the advan-
tages of using synthetic data for training learning-based models. However,
this work sheds light on the limitations of the available real and synthetic
visual object tracking datasets. As shown in Fig. 1, the adverse weather
conditions seem to be underrepresented in most of the available real and
synthetic VOT datasets. This causes the state-of-the-art trackers perform
poorly under these challenging weather conditions. Bearing this in mind, we
present synthetic data as a legitimate solution for the lack of the adverse
weather conditions in the real datasets. To this end, we utilize our proce-
dural content generation engine NOVA to generate a visual object tracking
dataset to be used in the training of general purpose visual object track-
ers. The generated dataset is specifically designed for tracking people under
adverse weather conditions in outdoor environments.
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3. Extensions to NOVA Framework

To procedurally generate synthetic sequences of pedestrians under ad-
verse weather conditions, we use the NOVA rendering engine [20], which is
designed with the goal of allowing researchers with no experience in com-
puter graphics to generate high quality datasets with accurate and dense
annotations. NOVA operates in two modes. The first is to generate a single
sequence while the other is to generate a full dataset. The first mode gives
the user full control of the sequence being generated where it is possible to
specify the environment, the weather condition, time of day, camera type,
number of cars and number of pedestrians and their density. The dataset
mode requires nothing to be specified except the number of sequences to be
generated so that NOVA varies the other parameters automatically.

For the particular task of person tracking this work deals with, NOVA
generates, for each frame, a bounding box specifying the exact location of
the person(s) being tracked in the frame and the occlusion state, that is,
whether any other object or person in the scene occludes the person(s) being
tracked at that instant. In addition to these, a supplementary metadata are
provided with each sequence denoting the environment, weather condition,
time of day, camera type, number of people and cars and people density.

One of the major highlights of NOVA is its capacity to procedurally gen-
erate highly diverse and photorealistic sets of synthetic humans. So much so
that, each generated human is practically unique in appearance due to the
practically infinite number of recipes (combinations of parameters that are as-
signed randomly on the fly but in cohesion with each other) that NOVA uses
in creating them. In this work, we further develop this aspect of NOVA by
incorporating premade synthetic humans from Microsoft Rocketbox Avatar
Library [21].

Since the main aim of this work is to enhance the performance of the
trackers under adverse weather conditions, we also extended other capabili-
ties of NOVA toward photorealistic simulation of the generated humans under
adverse weather conditions. The environment is built to change dynamically
to match the corresponding weather condition and time of the day. Accord-
ingly, the textures of buildings are changed to have lit windows at nighttime.
Furthermore, we implemented the following for the three weather conditions
to facilitate the generation of synthetic sequences with similar visual charac-
teristics to the ones observed in the real-world videos captured under adverse
weather conditions.
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Snowy Weather Condition. First, the variety of clothing used to generate
humans in snowy weather is restricted only to outdoor cold-weather clothes.
At the same time, humans are randomly assigned umbrellas. An umbrella is
attached to the right or left hand at random. The animation of the character
is set to match the umbrella mode, i.e., open or close. Snow tracks left by
cars and pedestrians are simulated. Furthermore, snow banks and melt snow
are created on the pavements and roads to give a higher degree of realism.
For this, a set of street light poles in the scene are selected at random to
determine the positions of the snow banks. Then, from a predefined set of
snow banks, one snow bank is instantiated for each position. After that, snow
materials are assigned at random to the snow banks. Following this, the scale
and rotation of these models are randomized to allow for even more diversity.
On the other hand, the melt snow is simulated by the same snow shader that
is used to simulate accumulated snow but with the accumulation parameter
set to a random smaller number than the one used for accumulated snow.
Making use of the particle system and post-processing effects, falling snow
particles and blizzard were randomly introduced to the simulation, as well.

Rainy Weather Condition. Similar to the snowy weather condition, hu-
mans in rainy weather are also generated with outdoor cold-weather clothes;
and umbrellas are given to some of the generated humans in the same way.
In addition, water puddles are simulated to account for water accumulation
due to the rain. This is realized by using a puddle shader that is assigned
to some of the ground materials (pavements, roads etc.) randomly. For the
heavy rain, the rain splash is activated and additional water puddles are in-
stantiated from a predefined set of water puddles. Rain drops are generated
using the particle system. Furthermore, rain drops falling on camera lens
are simulated using post-processing effects to match the characteristic of the
rainy videos in real life.

Foggy Weather Condition. The clothes of the people produced in the
foggy weather simulation are not limited to a specific category, but instead are
randomly selected. Additionally, the fog is simulated using post-processing
effects and the Enviro system [22]. The fog density is randomized at run
time to give more diversity.

Motion Blur and Chromatic Aberration. These camera effects were
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Figure 2: Chromatic aberration, motion blur and both effects are demonstrated in the
first, second and third rows, respectively. The first column shows the original frame while
the second displays the result of applying the effect(s).

simulated additionally to match the camera degradation observed in real-
life adverse weather videos. Using post-processing, NOVA simulates these
two effects procedurally and parametrically. Thus, how severe the effect of
these two degradations is randomly configured at run time to provide further
diversity in the generated synthetic sequences. In Fig. 2, the impact of using
these effects over the generated sequences is shown with a sample of images.
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Table 1: Dataset statistics of PTAW172Real.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames
Videos

Rain 108 1755 498 31888 64

Snow 113 960 394 24010 61

Fog 106 750 328 15394 47

All 106 1755 407 71292 172

4. PTAW172Real and PTAW217Synth Datasets

4.1. Real-World Data Collection for PTAW172Real

For the aim of analysing the performance of the recent general purpose vi-
sual trackers under adverse weather conditions, we collected real-world videos
from YouTube spanning snowy, rainy and foggy weather. Keywords such as
“adverse”, “extreme”, “heavy”, and “severe” were used together with the
weather names to initiate searches on the Youtube video-sharing platform.
Following this, the query results were checked and only the videos satisfy-
ing the adverse weather conditions were selected. The acquired videos were
edited to assure that the object is not occluded and clearly visible in the
initial frame. At the same time, the lengths of the videos were modified as
needed to keep them around 400 frames per video to provide compatibility
with the sequences in the available visual object tracking datasets. Statistics
showing the minimum, maximum, average and total number of frames are
given in Table 1. The number of videos in the dataset is 172 and the total
number of frames is over 71 thousand. The collected videos are at 24 frames
per second (FPS) and average time period per sequence is around 17 seconds.
Sample frames from the collected PTAW172Real dataset are shown in Fig. 3.

We used the VGG Image Annotator tool [23, 24] for annotating the
dataset. We annotated every 5th frame be drawing a bounding box around
the person of interest. The accessories such as handbag etc. that a person
can carry were excluded and the tightest box was drawn. When the per-
son was partially or fully occluded, the estimated location of the person was
considered. Additionally, each video was associated with four attributes re-
garding object occlusion, scale change, background clutter and abrupt cam-
era motion. Fig. 4 gives the hierarchical distribution of the attributes in
PTAW172Real dataset.
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Figure 3: PTAW172Real, our real person tracking dataset, consists of 172 sequences.
Each row shows a specific adverse weather condition, namely rain, fog, and snow.

Figure 4: The sunburst chart shows the different attributes distribution across
PTAW172Real dataset. The inner circle shows the weather conditions, outer circles
show occlusion (FO:Full Occlusion, PO: Partial Occlusion), scale change (LSC: Large
Scale Change, SSC: Small Scale Change), background clutter (BC: Background Clutter,
NBC: No Background Clutter) and abrupt camera motion (ACM: Abrupt Camera Motion,
NACM: No Abrupt Camera Motion).

4.2. Synthetic Data Generation for PTAW217Synth

PTAW217Synth employed in the experiments to train the deep learn-
ing trackers consists of 217 synthetic sequences that were generated using
the NOVA rendering engine. NOVA allows to specify the attributes of the
sequences to be generated. In this work, we configured these attributes
to match our goal of generating diverse synthetic sequences under adverse
weather conditions. Accordingly, the weather conditions were limited to
snowy, rainy and foggy weather. The virtual camera type to capture the
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Figure 5: Hierarchical view of the attributes across our training synthetic person tracking
dataset, PTAW217Synth, generated by using NOVA.

Figure 6: PTAW217Synth, our training synthetic tracking dataset, consists of 217 se-
quences, each with a unique set of attributes. Random frames are shown here, illustrating
the variations in crowdedness, camera altitude, weather conditions and times of day.

simulations was set as either the street-level camera or the surveillance cam-
era. The simulation environment was limited to the streets of an urban
center, since such are the most common settings in the real-world visual ob-
ject tracking datasets. In parallel to this, all other attributes such as time
of day and crowdedness were randomised to ensure the diversity of the gen-
erated sequences. The attributes of the generated synthetic sequences are
given in Fig. 5. Consequently, the diversity of the generated sequences can
be noted in the sample images from these sequences in Fig. 6.

Further information regarding the minimum, maximum, average and total
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Table 2: Dataset statistics of PTAW217Synth.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames
Videos

Rain 490 510 501 34538 69

Snow 490 510 501 37577 75

Fog 490 510 499 36432 73

All 490 510 500 108547 217

Figure 7: The figure demonstrates the weather variations simulated in PTAW217Synth.
The first and second rows present different view points of the same location. Each group
of 2x2 images shows one weather condition (from left to right: rainy, foggy, and snowy) in
increasing adversity while the leftmost image shows the same location in clear weather.

number of frames are shown in Table 2. The overall average number of
frames per sequences is 500 which translates to a duration of 21 seconds as
the sequences were generated at 24 FPS. The total number of frames of the
217 sequences within the dataset is more than 108 thousand. We should note
that PTAW217Synth has an even distribution of sequences across the rainy,
snowy and foggy weather conditions. The sample images captured at a single
location from two different view points given in Fig. 7 further demonstrate
the variety of the simulated weather conditions.

A visual comparison between PTAW172Real and PTAW217Synth datasets
is given in Fig. 8. In each row a specific weather condition is presented.
Both datasets exhibit similar visual characteristics for the three weather
conditions. The figure also demonstrates the level of photorealism of the
PTAW217Synth dataset.
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Figure 8: A visual comparison among the synthetic PTAW217Synth (to the right) and
real PTAW172Real (to the left) datasets. Each row demonstrate specific weather condition
(from top to bottom: rainy, foggy, and snowy).

5. Experiments

In this section, we study the performance of the state-of-the-art visual
trackers in adverse weather conditions. The poor performance is highlighted
and discussed. In the second set of experiments, we show how the perfor-
mance of the deep-learning based visual trackers can be enhanced by training
on our generated synthetic sequences. First, the evaluation measures are dis-
cussed in Section 5.1. Then, the utilized trackers are described in Section 5.2
and the training protocol is explained in Section 5.3. Finally, the results are
analysed and explored in Section 5.4.

5.1. Evaluation Measures

The two widely used metrics precision and success (IoU) are employed
for evaluating the performance of the visual trackers analyzed in this work.
Precision calculates the distance between the centers of the tracker bounding
box and the ground truth bounding box and then checks whether this center
error is within the specified limits. We employ the conventional threshold of
20 pixels and consider the tracking as accurate for a frame if the center error
is smaller than this value. We then extract the percentage of the accurately
predicted bounding boxes for each sequence in our dataset. On the other
hand, success measures the intersection over union (IoU) of the tracker and
ground truth bounding boxes. We take a tracking to be successful if the IoU
is larger than the common threshold of 0.50, and report the percentage of
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the successfully predicted bounding boxes averaged over the sequences in our
dataset.

5.2. Trackers

In order to properly address the poor performance of the state-of-the-art
general purpose trackers under adverse weather conditions, two different sets
of trackers were selected. The sets present the two main approaches in visual
object tracking, i.e. correlation filter -based and learning -based tracking.

Five different state-of-the-art correlation filter based trackers were chosen
for the experiments. These are ECO [25], BACF [26], and context aware
(CA) [27] versions of DCF [28], SAMF [29] and STAPLE [30]. DCF ,
dual correlation filter, utilizes a kernelized correlation filter (KCF) that has
a similar complexity to the linear counterpart of it, which improves tracker
speed (FPS) considerably. On the other hand, SAMF , scale adaptive with
multiple features, uses a scale adaptive template size instead of using a fixed
one for the correlation filter kernel which is stated to make the tracker more
robust. STAPLE, sum of template and pixel-wise learners, fuses template
and histogram scores to better handle shape deformation which facilitates
tracking deformable objects more accurately. ECO uses a modified version of
DCF to improve memory usage, tracking speed, and robustness. BACF uses
a background-aware correlation filter that utilizes specific manually extracted
features that account for both background and object of interest change over
time. The context aware versions of DCF [28], SAMF [29] and STAPLE
[30] that we used improve the original implementations by utilizing the global
context information into the standard correlation filter tracking algorithms.

Similarly, for investigating the benefits of training on our generated syn-
thetic sequences, four state-of-the-art learning based deep trackers were used.
They are DiMP [31], ATOM [32], PrDiMP [33], and KYS [34]. DiMP is an
offline learning based tracker that can be trained in an end-to-end manner.
It applies both background and target information in the process of pre-
dicting the object of interest location. The tracker is based on the Siamese
tracking architecture. It learns the discriminative loss function during the
training phase. ATOM, however, is a deep-learning tracker that is trained
both offline and online. Its tracking algorithm deploys target estimation and
classification that are learnt offline and online respectively. At run-time, the
classification component predicts the IoU between the target object and the
estimated bounding box. PrDiMP is another learning based tracker that is
based on the DiMP architecture. However, unlike DiMP tracker, PrDiMP
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applies probabilistic regression concept and predicts the probability density
of the target given the input frame. This tracker is trained by minimiz-
ing KL-divergence in offline manner. KYS tracker, however, uses the visual
scene information to better enhance the target localization and tracking.
KYS encodes this information using localized state vectors and propagates
it through the sequence to achieve better knowledge of the scene. Thus, it
achieves better performance during testing. KYS is trained offline to learn
how to propagate the scene information.

5.3. Training Protocol

We perform two training scenarios to assess the benefits of the generated
synthetic sequences when used for training visual object trackers. For both
experiments, the training was done using the whole PTAW217Synth dataset
of 217 synthetic sequences. At the same time, the validation and testing
were performed on the whole PTAW172Real dataset. For validation, 33
videos spanning the rainy, foggy and snowy weather conditions were selected
at random. While the remaining 139 videos were applied for testing.

Training from Scratch. In the first scenario, we train the trackers from scratch
using only the generated synthetic sequences. Then, the best model on the
validation set is tested on the test set. The mean and the standard deviation
of the tracker performances are reported for 5 iterations to account for the
stochastic nature of these trackers. Both validation and test sets are real and
contain no overlapping videos.

Fine-Tuning. In the second scenario, the pre-trained versions provided by
the authors of the four trackers are fine-tuned on our synthetic sequences.
Later, the performance of these models are stated as done in the previous
case.

5.4. Results

The performance in terms of precision and success score are shown in Ta-
bles 3 and 4 for the studied trackers on the test partition of PTAW172Real,
namely 163 videos. These results show that the trackers from both tracking
mainstreams, correlation filter based and learning based, performed poorly
under adverse weather conditions. This observation confirms that adverse
weather conditions pose certain challenges for the state-of-the-art tracking
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Table 3: Precision results of the available state-of-the-art trackers on the adverse weather
condition real dataset, test partition of PTAW172Real.
Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.59 0.50 0.46 0.38 0.22 0.61+/-0.01 0.60+/-0.01 0.61+/-0.01 0.63+/-0.02
Snow 0.56 0.53 0.49 0.46 0.35 0.60+/-0.01 0.62+/-0.01 0.59+/-0.01 0.58+/-0.01
Fog 0.67 0.65 0.59 0.42 0.37 0.73+/-0.01 0.74+/-0.01 0.74+/-0.01 0.77+/-0.02

Table 4: Success scores of the available state-of-the-art trackers on the real adverse weather
condition dataset, PTAW172Real.
Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.64 0.56 0.47 0.45 0.20 0.66+/-0.01 0.63+/-0.01 0.64+/-0.01 0.65+/-0.02
Snow 0.56 0.55 0.49 0.43 0.28 0.59+/-0.01 0.61+/-0.01 0.59+/-0.01 0.57+/-0.01
Fog 0.70 0.69 0.59 0.42 0.27 0.73+/-0.01 0.73+/-0.01 0.73+/-0.01 0.78+/-0.02

algorithms. The correlation filter trackers perform worse than the deep track-
ers because they are mostly online learning trackers. On the other hand, the
deep trackers, which are based on offline learning algorithms, were trained
on large scale datasets, which may have contained a number of videos under
adverse weather conditions. Thus, they performed slightly better than the
correlation ones.

It seems that rain and snow particles, that partially occlude the object
of interest, cause a significant change on the visual characteristics of the
trackers. Thus, it makes it hard for the tracker to differentiate the target
object from the background. This effect is particularly clear when the size
of the object of interest is relatively small. In parallel to that, fog causes
both the background and the object of interest regions to have similar visual
appearance. Thus, it makes it hard for the tracker to distinguish the target
object from the background. Even so, foggy weather condition seems to be
slightly less challenging as compared to the others.

The results of our training experiments are shown in Fig. 9. The IoU
scores for the four trained trackers, namely DiMP, ATOM and PrDiMP, are
presented for the two training scenarios. Moreover, these results are com-
pared to the ones of their corresponding baselines. Both average and stan-
dard deviation on five iterations were reported to account for the stochastic
nature of these trackers. Training these trackers from scratch on our adverse
weather synthetic sequences achieves comparable results to the ones obtained
using the baseline for DiMP and PrDiMP. For ATOM and KYS, however, the
trained models from scratch surpassed their baselines. On the other hand,
fine-tuning the pre-trained models on our synthetic sequences improved the
performance of the three trackers ATOM, DiMP and PrDiMP distinctly.
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Figure 9: IoU results obtained with the two different training scenarios as compared to
those of the baselines. Error bars give the standard deviation of the IoU results. Fine
tuning the baselines on our synthetic sequences improves the performance.

It is worth noting, that both the tracking algorithm and the training
dataset affect how a specific tracker gains from training on our synthetic
sequences. Both determine which training scenario, from scratch or fine-
tuning, is more beneficial. For example, DiMP and PrDiMP trackers got the
most advantage from fine-tuning. On the other hand, training from scratch
was better for KYS tracker, while the performance of ATOM was improved
in both scenarios. Another point to be noticed is the conspicuous difference
in the level of improvement in trackers performance across different weather
conditions. This can be directly linked to the varying distribution of the
adverse weather conditions in the different training datasets used for these
baselines. So much so that, the lack of adverse weather conditions videos in
the training dataset stands out to be the main reason behind the observed
performance boost since using even a relatively small number of synthetic
sequences spanning these absent features helped the trackers to outperform
their baselines, given that the trackers were originally trained on large scale
datasets such as LaSOT [35], GOT10k [36], COCO [37], and TrackingNet
[38], each far exceeding PTAW217Synth in number of sequences.

It is important to note that test set contains only real sequences. Thus,
the domain gap problem is not a playing factor under the scope of this anal-
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ysis. In contrast, diversity of the synthetic sequences in terms of weather
conditions, times of day, lighting conditions, camera attributes and synthetic
humans altogether enhanced the training process significantly. Additionally,
the high level of photorealism of these synthetic sequences mitigated the
gap across the real and synthetic domains. Thus, training from scratch or
fine-tuning on our synthetic sequences directly improved the trackers perfor-
mance.

A qualitative comparison among the tracking results achieved by the base-
lines and the trained models is presented in Fig. 10. It is seen that utilizing
our synthetic data for training improves the performance of the baselines
under adverse weather conditions.

Additionally, Fig. 11 displays the success scores for the four deep trackers
under full occlusion, scale change, background clutter and sudden camera
motion videos. In general, both the baselines and the trained models per-
formed the worst in sequences with background clutter while the ones with
sudden camera motion resulted in relatively higher performance. It could be
because the background clutter under adverse weather conditions causes the
trackers to experience a significant difficulty in locating the object of interest
since both have similar visual appearances. On the other hand, the reason
that abrupt camera motion does not seem to be effecting trackers as much as
the other attributes could be due to the fact that the other three attributes
are more closely associated with the object of interest as compared to the
camera motion which effect both background and target similarly. A table
showing the number of sequences in each weather condition for each of the
four attributes is provided in the supplementary material.

6. Conclusion

Our work investigated the lack of adverse weather conditions in the avail-
able general purpose visual tracking datasets and highlighted the low perfor-
mance of the state-of-art trackers under these specific circumstances. As a
solution, we proposed using our NOVA rendering engine to generate synthetic
sequences that span snowy, rainy and foggy weather conditions. We trained
four different deep trackers, namely DiMP, ATOM, KYS and PrDiMP, on
217 synthetic sequences generated by NOVA and tested them on the real
videos that were collected from YouTube and annotated meanly by us for
that aim. Our analysis reveals that applying our synthetic sequences for
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Figure 10: A qualitative comparison of our trained trackers with the baselines on three
example sequences. Training on PTAW217Synth improves the trackers performance under
adverse weather conditions.

training purposes can bridge the data gap and improve the trackers perfor-
mance considerably.

A number of limitations have come to light toward the goal of using syn-
thetic sequences for model training as an alternative to the real data. Perhaps
the domain gap problem is the one of central concern in this scope. It arises
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Figure 11: Success scores for ATOM, DiMP, PrDiMP and KYS trackers are shown for
four different attributes. Background clutter causes the trackers to perform poorly.

mainly because the training and testing processes take place in two different
domains i.e. synthetic and real domains, respectively. To address this point,
we paid great attention to the photorealism of the generated synthetic se-
quences and most specifically the simulated adverse weather conditions. The
second key issue is that synthetic sequences are usually generated at opti-
mal lighting and recording conditions. Thus, the lack of image artifacts such
as motion blur, chromatic aberration, noise and others may cause models
trained on it to fail once such artifacts are encountered in real sequences. To
mitigate this problem, we generate our synthetic sequences at different light-
ing conditions and recording setups. Additionally, we simulate lens artifacts
such as motion blur and chromatic aberration. Another note-worthy issue is
the fact that repetitive textures, objects, animations, and motions frequently
observed in virtual 3D worlds may cause over-fitting. We tackled this issue
by diversifying scene elements such as pedestrians, buildings, cars, and other
scene objects.

Throughout this work, we demonstrated how our generated synthetic se-
quences improved trackers performance on adverse weather conditions. How-
ever, investigating the effect of adverse weather conditions on other com-
puter vision tasks like optical flow estimation, depth estimation, and person
re-identification are sill open questions. The boost in performance upon rem-
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edying the lack of sample with adverse weather conditions for the VOT task
could be an indication of a similar problem in other computer vision tasks.
In the light of this study, we believe that using our rendering engine NOVA
to generate synthetic training data can bridge the gap of data scarcity in said
tasks toward improvement in both accuracy and robustness.

The datasets PTAW172Real and PTAW217Synth that we featured in this
work are available for download at the project website https://graphics.

cs.hacettepe.edu.tr/NOVA-Adverse along with a supporting video illus-
trating the motivation behind this work, a sample of sequences from PTAW217Synth
and also a sample of the PTAW172Real sequences superimposed with track-
ing results.
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