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A B S T R A C T

Recognition of human actions using machine learning requires extensive datasets to de-
velop robust models. Nevertheless, obtaining real-world data presents challenges due to
the costly and time-consuming process involved. Additionally, existing datasets mostly
contain indoor videos due to the challenges of capturing pose data outdoors. Synthetic
data have been used to overcome these difficulties, yet the currently available synthetic
datasets for human action recognition lack photorealism and diversity in their features.
Addressing these shortcomings, we develop the NOVAction engine to generate highly
diversified and photorealistic synthetic human action sequences. We use NOVAction to
create the NOVAction23 dataset comprising 25,415 human action sequences with cor-
responding poses and labels. In NOVAction23, the performed motions and viewpoints
are varied on the fly through procedural generation, to ensure that, for a given action
class, each generated sequence features a distinct motion performed by one of the 1,105
synthetic humans captured from a unique viewpoint. Moreover, each synthetic human
is unique in terms of body shape (height and weight), skin tone, gender, hair, facial hair,
clothing, shoes and accessories. To further increase data diversity, the motion sequences
are rendered under various weather conditions and at different times of day, across three
outdoor and two indoor settings. We evaluate NOVAction23 by training three state-of-
the-art recognizers on it, in addition to the NTU 120 dataset, and corroborating using
real-world videos from YouTube. Our results confirm that the NOVAction23 dataset
can improve the performance of state-of-the-art human action recognition.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

The analysis of spatio-temporal features is a crucial aspect of2

understanding videos. To leverage these features, deep archi-3

tectures including convolutional neural networks (CNNs) have4

been widely used [1]. Such approaches require a comprehen-5

sive training process that can only be achieved with the avail-6

ability of large datasets. For this, the lack of task-specific data7

poses a difficult challenge, even more so in the domain of hu-8

man action recognition [2], which is a complex computer vision9

problem that requires careful consideration of both the data and10

the classifier.11

Despite extensive research, the performance of human action12

recognition systems is still problematic. The main reason is13

the complexity of processing sequences containing diverse hu- 14

man actions, s.t., each person performs actions uniquely, and 15

each sequence is captured with distinct camera views. Train- 16

ing a bias-free model with high generalization capability re- 17

quires large amounts of data with diversity in actions, view- 18

points and subjects. This cannot be easily achieved with real- 19

world datasets, as providing such diverse data in large volumes 20

with accurately annotated labels is quite a challenge. 21

Large action datasets Kinetics-400 [3] or Kinetics-700 [4], 22

which are curated from real-world videos, provide a wide vari- 23

ety of data made up of image sequences without explicit pose 24

information. Using image-only data in training can lead to 25

problems such as representation bias. To illustrate, if there is a 26

soccer net in the video background, the action could be directly 27

http://www.sciencedirect.com
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inferred as playing soccer [5]. There have been attempts at cap-28

turing large human action datasets in real-world scenes with ex-29

plicit pose information, such as NTU RGB+D (NTU 60) [6]30

and its extended version NTU RGB+D 120 (NTU 120) [7],31

but their data variety have been limited due to having low ac-32

tor count (40 in NTU 60 and 106 in NTU 120). In addition,33

they feature only a handful of backgrounds (classrooms, cam-34

pus gardens, and places in between).35

To address the problem of data diversity, we present a versa-36

tile synthetic data generation engine named NOVAction, which37

can create massive human action datasets by generating arbi-38

trarily large number of human action sequences, each unique39

in terms of acting human, acted motion and camera viewpoint,40

with pixel-accurate pose information and attribute labels. To41

this end, NOVAction extends the photorealism of the previous42

work [8] by including more stable illumination and improved43

post-processing, offers an additional indoor scene for more di-44

verse backgrounds and lighting conditions, and features a pro-45

cedural animation system to achieve motion diversity.46

We use the NOVAction engine to generate the NOVAc-47

tion23 dataset consisting of 25,415 unique human action se-48

quences with corresponding poses and labels (available at49

https://github.com/celikcan-cglab/NOVAction23). While there50

have been previous synthetic datasets [9–13] that addressed51

the data annotation problem with automatically generated la-52

bels and pose information, these have had limited diversity in53

terms of camera viewpoints, subjects or motion characteris-54

tics. NOVAction23 is a comprehensive photorealistic dataset55

that specifically addresses these shortcomings by providing se-56

quences of human actions in 20 action classes captured from57

125 different base views and performed by 1,105 synthetic hu-58

mans in five different scenes, three of which comprise expan-59

sive outdoor environments, providing a diverse array of back-60

grounds. Furthermore, the acted motions and the base views61

are varied on the fly through procedural generation, so that, for62

a given animation class, each generated action sequence fea-63

tures a unique motion acted by one of the 1,105 synthetic hu-64

mans captured from a unique viewpoint. Thus, NOVAction2365

also addresses the arbitrary-view action recognition problem,66

the challenge of accurately recognizing human actions from any67

viewpoint [11, 14], more extensively than the previous synthetic68

human action datasets.69

We demonstrate the efficacy of the NOVAction23 data in im-70

proving action recognition performance through experiments71

using three state-of-the-art action recognizers, namely TimeS-72

former (TS) [15], Temporal Pyramid Network (TPN) [16] and73

SlowOnly [17]. We also conduct an ablation study using dif-74

ferent data partitions of NOVAction23 to evaluate the effects75

of lighting conditions, backgrounds and data modality, and to76

compare the performance of NOVAction23 with another syn-77

thetic dataset.78

The remainder of this paper is organized as follows. Sec-79

tion 2 provides an overview of prior research on human action80

datasets, action recognition, and synthetic datasets. Details of81

the NOVAction engine and the NOVAction23 dataset are given82

in Sections 3 and 4, respectively. Section 5 presents the exper-83

iments where we test NOVAction23 in various settings. Finally,84

Section 6 outlines the limitations of the present work and con- 85

cludes the paper. 86

2. Previous Work 87

Human Action Datasets. A number of RGB human ac- 88

tion recognition datasets, such as UCF101 [18], HMDB51 [19], 89

ActivityNet [20], Kinetics 400, 600 and 700 [3, 4, 21] have 90

been made publicly available. AVA [22] and AVA-Kinetics [23] 91

offer action labeling with bounding boxes. While some of 92

these datasets are relatively high-scale, they suffer from rep- 93

resentation bias [5]. In addition to the RGB datasets, several 94

multimodal datasets have also been made available for under- 95

standing human activity, such as UTD-MHAD [24] and Div- 96

ing48 [25], as well as several that are also multi-view, such as 97

MMI [26], SYSU 3D HOI [27], UWA3D [28], FineGYM [29], 98

NTU 60 [6], and NTU 120 [7]. These multimodal datasets pro- 99

vide depth maps and 3D skeletons estimated from the captures 100

by the Kinect sensor [30]. As such, they are widely used for 101

skeleton-based human action recognition, which reduces repre- 102

sentational bias since skeletal data is devoid of any background 103

information. However, these datasets have two major shortcom- 104

ings. First, the 3D skeletons they provide are only estimated 105

with Kinect 3D’s own means, therefore are prone to errors [31]. 106

Second, since Kinect, using infrared projection, can not cap- 107

ture depth images accurately in outdoor lighting [32], their data 108

mostly consists of indoor backgrounds and lighting. 109

110

Synthetic Datasets. In recent years, synthetic datasets 111

have been created for a variety of purposes, including au- 112

tonomous driving and object recognition [33–37], person re- 113

identification [38–40] and head pose estimation [41]. Virtu- 114

alPTB1 [8] and PTAW217Synth [42] were procedurally gener- 115

ated by the NOVA framework for tracking people in normal and 116

adverse weather conditions, respectively. 117

Synthetic data is also available to support human action 118

recognition research, as real datasets are difficult to collect or 119

assemble. SURREACT [11] provides non-photorealistic video 120

sequences, utilizing 3D pose data provided by the NTU 120 121

dataset. ActionSim [9] data includes sequences in five action 122

classes created with Unity. Sims4Action [10] offers recorded 123

action videos from The Sims 4 video game featuring 10 action 124

classes with eight different subjects. It features multiple exam- 125

ples per class, but the actions of the classes are nearly identical, 126

as Sims 4 only features a handful of different animations per 127

action. The ElderSim [12] platform used Unreal Engine 4 to 128

generate KIST SynADL, which includes videos of elderly peo- 129

ple performing daily activities in 55 classes. Even though they 130

produced a large number of videos, the action variety of the 131

dataset is limited by the motion capture animations of 100 in- 132

dividuals from different angles and times of the day. Mixamo 133

Kinetics [13] is a hybrid dataset containing both synthetic and 134

real data. The synthetic data was generated using six different 135

pre-built avatars performing 14 classes of actions obtained from 136

the Mixamo website. 137

138

Action Recognition. After the introduction of inflated 3D con- 139

volutional networks (I3D) [3, 43], 3D convolutional networks 140

https://github.com/celikcan-cglab/NOVAction23
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became the standard for action recognition tasks. Later, many141

models [17, 44–46] have been built with the same principles and142

outperformed the original I3D architecture. Recent classifiers143

TPN [16] and TS [15] have achieved better top-1 classification144

accuracy in Kinetics 400 [3] compared to priors.145

In addition to the 3D convolutional and convolution-free146

networks, skeleton-based action recognition models using147

pose estimation of individuals as input have been proposed.148

PoseC3D [31] introduces a top-down pose extraction method149

to re-estimate the 2D skeletal information of the datasets since150

3D skeletal information obtained from the Kinect sensor may be151

faulty in some cases. For human recognition, they utilize Faster152

R-CNN [47], while they use HRNet for pose estimation [48].153

This approach aims not only to remove the erroneous informa-154

tion obtained from the Kinect but also to alleviate the domain155

adaptation problems that may arise from using different types156

of sensors.157

3. NOVAction Engine158

NOVAction is an expansion of the NOVA synthetic data gen-159

eration framework [8]. Both were developed using Unity.160

The original NOVA engine is a multifaceted framework for161

automatically generating arbitrarily large amounts of synthetic162

data for a wide range of low and high-level computer vision163

tasks. It can render realistic-looking virtual worlds contain-164

ing procedurally generated humans together with pixel-level165

ground truth annotations, including body pose, bounding box,166

instance segmentation, semantic segmentation, depth map, and167

optical flow. In addition, NOVA can simulate various environ-168

mental factors such as different weather conditions and times169

of day and bring to life an exceptionally diverse set of unique170

humans at runtime using procedural generation.171

In the following, we detail the extensions made to NOVA in172

order to realize the NOVAction engine featured in this paper.173

3.1. Additional Scene and Lighting174

NOVA engine is able to produce sequences in four different175

scenes (a town square, a suburban street a metropolitan urban176

district, and a subway station). To increase the variety of the177

generated data and the compatibility with datasets such as NTU,178

an office environment, including a lobby and a meeting room,179

was added. Similar to the existing environments, the new en-180

vironment has multiple points where synthetic individuals are181

randomly spawned during data generation. Further, all environ-182

ments have been configured to use real-time lightning, instead183

of the previously used baked lightning, for improved photoreal-184

ism, as illustrated in the third row of Fig. 1.185

3.2. Improved Image Post-Processing186

The NOVA engine uses fast approximate anti-aliasing187

(FXAA) to advance image sharpness by sampling every pixel188

in a frame [49]. While FXAA efficiently improves image qual-189

ity, it does not consider the following or previous frames when190

rendering the image. On the other hand, temporal anti-aliasing191

(TAA) [50] improves the sharpness for scenes with more flow192

compared to FXAA. Therefore, in NOVAction, we replaced193

NOVA NOVAction

Fig. 1: Sample frames generated by NOVA (left) and NOVAction (right).

FXAA with TAA to acquire image sequences in enhanced qual- 194

ity. In addition, we have implemented bloom, color grading, 195

eye adaptation, and vignetting, as illustrated in the second row 196

of Fig. 1. 197

3.3. Procedural Animation System 198

The foremost improvement of NOVAction is the addition of 199

a procedural animation system. We used 23 actions from the 200

Mixamo library [51] and grouped these into 20 different action 201

classes corresponding to the ones in the NTU 120 dataset, by 202

Table 1: Action class correspondences between the NTU 120 and NOVAction
sequences.

NTU 120 NOVAction23 Description
A022 0, 2 Cheer up
A010 1 Clapping
A035 3, 14 Nod head (yes)
A006 4, 6 Pick up
A036 5 Shake head (no)
A038 7 Salute
A104 8 Stretch
A069 9 Thumb up
A009 10 Stand up
A103 11 Yawn
A023 12 Hand wave
A029 13 Tablet/phone interaction
A046 15 Back pain
A007 16 Throw an object
A037 17 Wipe face
A080 18 Squat
A043 19 Falling down
A049 20 Fan self
A102 21 Side kick
A027 22 Jump
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using three actions out of 23 as alternatives for similarity in con-203

text to the implemented classes. The class correspondences are204

itemized in Table 1. These actions were reformatted to make205

them compatible with the synthetic human generation system206

of the NOVA engine, so that any synthetic human generated by207

NOVAction can perform the added 20 action classes. Sample208

frames for the action classes are given in Fig. 3.209

For every individual Mixamo action, we procured animations210

with distinct subject arm space and speed settings that are com-211

monly available in the Mixamo library. Each animation was212

acquired in four different versions: one with the fastest mo-213

tion and widest arm space; one with the slowest motion and214

widest arm space; one with the fastest motion and narrowest215

arm space; and one with the slowest motion and narrowest arm216

space. Then, to generate each action sequence, these four an-217

imations were mixed using two-dimensional animation blend218

trees, where the two parameters were represented by the two219

axes of the tree and were randomly determined. The outcome220

of this process significantly augments the diversity of the gen-221

erated data. As a result, NOVAction can generate distinctively222

unique actions in each action class, which sets it apart from syn-223

thetic action generation systems [9–13] that rely solely on pre-224

made motion-captured sequences, severely limiting the variety225

of performed actions. In addition, NOVAction can automati-226

cally produce the corresponding pose information in both 2D227

and 3D.228

Providing a variety of actions was aimed at enhancing229

NOVAction23’s realism by aligning it with real-world action230

data, thereby improving accuracy when employed as a training231

dataset for action recognition models, especially in uncommon232

scenarios. For example, although most side kick actions in real-233

ity are executed rapidly, some side kick sequences also exhibit234

individuals executing the action slowly. The presence of corre-235

spondingly timed training data can improve classification accu-236

racy, particularly when used in conjunction with methods that237

involve pointed temporal inference.238

4. NOVAction23 Dataset239

It is essential to vary the attributes of classification datasets240

to improve their potential in model training with higher gener-241

alization capability. Our dataset encompasses a diverse range242

of motions, subjects, camera views and locations (i.e., back- 243

grounds), providing a greater degree of variety in comparison 244

to state-of-the-art real and synthetic datasets. 245

While most human action recognition datasets consist of se- 246

quences taken indoors, outdoor sequences are very limited. 247

This can severely restrict action recognition performance in re- 248

lated cases, such as video footage captured with outdoor cam- 249

eras. Therefore, we made it a point to generate more data using 250

the outdoor scenes for NOVAction23. 251

In each scene, there exists five spawn points, at one of which 252

a uniquely generated subject is spawned randomly. And, there 253

are five base camera viewpoints for each spawn point. This 254

brings about 125 base views in total. Once a camera is gener- 255

ated, it focuses directly on the generated subject. Finally, small 256

random perturbations are made to the camera’s view angle and 257

position. Hence, the camera viewpoint is unique to each gener- 258

ated action sequence due to the random variations added on top 259

of the base views. 260

Ensuring subject diversity in real-world datasets is typically 261

challenging, especially in terms of recruiting and/or compen- 262

sating subjects. When videos are collected via web scraping 263

or similar means, there are usually ethical or legal issues re- 264

garding privacy and data protection [53]. We see that many 265

public datasets are either taken down or significantly reduced 266

over time due to these issues. NOVAction combines a large set 267

of attributes (skin tone, gender, height, weight, hair, facial hair, 268

clothing, shoes, accessories, etc.) by making use of several lay- 269

ers including a predefined set of categorizable, annotatable fea- 270

tures as well as low-level randomizations on these features, to 271

generate unique human models at runtime. This eliminates pri- 272

vacy concerns and significantly reduces the experimental bud- 273

get. 274

Thanks to the diverse generation capabilities of the NOVAc- 275

tion engine, each synthetic human in the NOVAction23 dataset 276

is truly unique. In total, 1,105 synthetic humans were gener- 277

ated. Every one of these synthetic humans performed each of 278

the 23 actions in a specific scene at a specific time of the day. 279

The actions performed were also uniquely varied on the fly, as 280

described in Section 3.3. In this process, over three million 281

raw images were generated in 1920x1080 resolution. The raw 282

images were combined to create the 25,415 action sequences. 283

Action class, environment attributes (weather, time, scene), and 284

Environment
Attributes

Weather Time Scene

Sunny

OvercastCloudy

Partly Sunny

Sunrise

NightNoon

Suburban

OfficeCity

Downtown

Subway

Subject
Attributes

SkinGender

294 284

320
284283

391394

257

241

157

256

237

Male Female

555 550

Average

DarkLight

399

356350

Height

Average

TallShort

582

271252

Weight

Average

OverweightUnderweight

488

244373

Fig. 2: The main attributes used in the NOVAction23 dataset and their distributions. Height, weight, and skin tone are not discrete values but are grouped into three
sets for data labeling purposes.
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Clap

Shake head

Stretch

Back pain

Wipe face

Pick up an object

Thumbs up

Yawn

Tablet/phone interaction

Nod head

Fan self

Jump

Stand up

Salute

Cheer

Hand wave

Throw an object

Side kick

Fall

Squat

NTU NTU

NOVAction23 NTUYouTube

NOVAction23NOVAction23

Fig. 3: Sample frames from NOVAction23, NTU 120, and YouTube sequences for each action class. The first 15 actions show three frames from NOVAction23 and
one frame from NTU 120. The last five actions show two frames from NOVAction23, one frame from YouTube, and one frame from NTU 120.
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Table 2: Dataset comparison. § indicates that there is no clear statement about the characteristic. † indicates that the given values are base values and there are
additional variations per sequence on top of the base values.

Dataset Type
Scene Type

(Scene Count)
Views Subjects Actions Classes

Outdoor
Scenes

Resolution Pose Videos

ActionSim [9] Synthetic 2D (§) 2 § § 5 No 1280x720 ✓ 100

Sims4Action [10] Synthetic 3D (2) 24 8 10 10 No 640×368 ✗ 942

Mixamo [13] Synthetic 2D (200) 8 6 14 14 Yes 512x512 § 24,533

SURREACT [11] Synthetic 2D (§) 8 118 § 60 Yes 320x240 ✓ 105,503

KIST SynADL [12] Synthetic 3D (4) 28 15 5,500 55 No 640×360 ✓ 462000

NTU 120 [7] Real Real (§) 155 106 § 120 No 1920x1080 ✓ 114,480

Smarthome [52] Real Real (§) 7 18 § 31 No 640×480 ✓ 16,129

NOVAction23 Synthetic 3D (5) 125† 1,105 23† 20 Yes 1920x1080 ✓ 25,415

certain synthetic human attributes (gender, skin, height, weight)285

were automatically labeled along with each generated sequence286

and became instantly usable. Fig. 3 demonstrates samples from287

NOVAction23, next to the samples from NTU 120 and YouTube288

in each action class, and Fig. 2 gives the distribution of the289

generated data. Also, a video demonstrating sample action se-290

quences from the NOVAction23 dataset in comparison to the291

ones from the NTU 120 and Youtube Action sets is provided as292

supplemental material.293

In Table 2, we provide a comparison of NOVAction23 to the294

previously released human action recognition datasets. The ta-295

ble shows that the NOVAction23 dataset stands out especially296

with a large number of camera views and subjects (synthetic297

humans), and a high video resolution. It also includes 3D298

backgrounds of indoor and outdoor environments, photoreal-299

istic humans and illumination, bringing it closer to the real data300

compared to previous synthetic data. Accordingly, the whole301

dataset includes 25,415 unique action sequences. The complete302

attribute variety of the dataset is given in Fig. 2 along with their303

distributions within the 1,105 different settings, i.e., per syn-304

thetic human. As the distributions indicate, the variations of the305

attributes were kept balanced.306

5. Experiments307

To assess the capabilities of NOVAction23 in improving ac-308

tion recognition models, a series of experiments was conducted309

using the state-of-the-art action recognizers, as detailed below.310

5.1. Datasets311

In addition to the full NOVAction23 dataset described in the312

previous section, we made use of the following as training, test313

and validation data in our experiments.314

315

NTU 120. We utilize the dataset as NTU 120 train and NTU316

120 test with the original cross-subject training and testing split317

(53 subjects for training and 53 subjects for testing) as proposed318

in [7].319

NTU 20. To have real data compatible with the NOVAction23320

dataset, so that they can be deployed together in training and321

testing, we make use of a modified version of NTU 120 by re- 322

taining the original cross-subject partitioning (53 subjects for 323

training and 53 subjects for testing) but removing the sequences 324

for the 100 classes that are not present in NOVAction23. We de- 325

note the modified dataset NTU 20, which includes the 20 action 326

classes that coexist in NOVAction23 (Table 1). 327

YouTube Action. We use this set mainly for validating the 328

performance of the trained models with real-world videos. To 329

this end, we have compiled a collection of 100 videos from 330

YouTube for a set of five action classes (stand up, jump, falling 331

down, squat, and side kick) selected from Table 1 (20 videos 332

per class). The set was restricted to these five classes due to 333

the limited availability of public videos with full body shots of 334

individuals performing the actions. The collected videos were 335

edited to ensure that each video covered a single action from 336

start to finish, similar to the videos in NTU and NOVAction23. 337

Videos that were not in 1920x1080 resolution were also scaled 338

to 1920x1080 for compatibility. Since we used the YouTube 339

Action videos for validation purposes only, they do not have 340

designated training or test partitions. 341

SURREACT. To test the performance of NOVAction23 in com- 342

parison to other synthetically generated action data, we make 343

use of the SURREACT (HMMR) dataset, as it contains 15 ac- 344

tion classes that are also found in NOVAction23 and NTU 120. 345

SURREACT consists of non-photorealistically animated videos 346

of the NTU 120 pose sequences. In the evaluation, we keep the 347

original training split [11], which contains 105,503 sequences 348

from the first 60 action classes of NTU 120. 349

¼ NOVAction23. To assess the impact of the amount of data 350

when training with NOVAction23, we also used a quarter of 351

NOVAction23, i.e., the action sequences performed by a ran- 352

domly selected set of 275 subjects (approximately a quarter) 353

out of the total 1,105. This set was used for training only. 354

355

All experiments were conducted using a cross-subject setup, 356

i.e., the training, testing, and validation partitions for each ex- 357

periment included data from distinct groups of subjects. 358

5.2. Evaluation Setup 359

The overview of the setup that we used for the skeleton- 360

based action recognition tests is given in Fig. 4. The experi- 361

ments were performed on a cloud server with Intel Gold 5315Y 362



Preprint /Computers & Graphics (2024) 7

CPU, Nvidia RTX A6000 GPU, and 45 GB of RAM, utiliz-363

ing MMAction2 [54], an open source video understanding tool-364

box based on PyTorch [55]. MMAction2 provides a variety365

of algorithms for different action recognition approaches, in-366

cluding skeleton-based, spatiotemporal, and RGB-based recog-367

nition. Additionally, it offers a wide range of data manipulation368

tools to facilitate loading and pre-processing.369

TPN

TimeS
former

Slow
Only

NOVAction23

NTURGB+D

YouTube

Classification

+

Fast R-CNN 
+ HRNet

(Pose 
Extraction)

Train

Test

Validate

Fig. 4: Diagram of our experimental setup for skeleton-based action recogni-
tion.

In order to use the RGB-only video sequences of the370

YouTube Action set in 2D pose-based (skeleton-only) recog-371

nition, it is necessary to apply pose estimation to extract the372

explicit per-frame pose information. Although the NOVAction373

engine provided precise pose information as ground truth for374

the generated action sequences, we also utilized pose estimation375

for the NOVAction23 sequences to be used in all skeleton-based376

recognition tasks. This was done to avoid domain adaptation377

issues and to introduce noise to the otherwise sterile NOVAc-378

tion23 data, which has been reported to improve overall classi-379

fication performance [56]. It has also been shown that the use380

of pose estimation keypoints, rather than pre-processed ground381

truth pose information, can boost accuracy for skeleton-based382

action recognition by up to 1.5% when synthetic videos with383

uniformly sampled frames are used as training data [9]. To cir-384

cumvent potential errors in the NTU 120 poses, which are com-385

monly attributed to limitations of the Kinect sensor [31], we386

also applied pose estimation for the NTU 120 sequences. Ac-387

cordingly, we estimated pose information from the RGB frames388

using the top-down pose estimation technique, as it provides389

more accurate pose estimation compared to bottom-up alterna-390

tives [57]. This approach, which we used for all skeleton-based391

models, consists of Faster R-CNN [47] with ResNet50 back-392

bone as the person detector and HRNet [48] with ResNet50393

backbone as the pose estimator. Both were pre-trained on the394

MS COCO dataset [58].395

For skeleton-based action recognition, Duan et al. [31] pro-396

posed using SlowOnly [17] with the backbone of ResNet50 [59]397

as the action classifier. In addition to SlowOnly, we also in-398

cluded TPN [16] and TS [15] as alternative recognizer ar-399

chitectures since these networks perform better compared to400

SlowOnly in certain benchmark tasks, such as the RGB-only401

action recognition on Kinetics 400 [15, 16]. We used the same402

hyperparameters utilized in [31] for our TPN and SlowOnly403

experiments: a dropout rate of 0.5, stochastic gradient descent404

with a learning rate of 0.05, weight decay of 0.0003, the mo-405

mentum of 0.9, batch size of 16 and cosine annealing [60] as 406

the learning rate schedule. In TS, however, we did not use 407

dropout as it lowers the accuracy. We used 32 as patch size, 408

AdamW [61] as optimizer with a learning rate of 0.001 and 409

weight decay of 0.1. All models were trained with 48 frames 410

of uniformly sampled 64x64 heatmap inputs from 17 different 411

joint points for 240 epochs. 412

For the RGB-only modality action recognition tests, we em- 413

ployed SlowOnly with a ResNet50 backbone, which was pre- 414

trained on the Kinetics 400 dataset for 256 epochs. Input data 415

for this modality consists of videos with 8 uniformly sampled 416

frames and a resolution of 224x224, as pre-training for Kinet- 417

ics 400 was conducted using these parameters. We opted for a 418

constant learning rate of 0.001, the dropout rate of 0.5, and the 419

batch size of 16 for the RGB-only modality models. We trained 420

our RGB-only networks for either 15 or 30 epochs in different 421

types of ablation experiments. 422

Other training, testing, and validation settings were used the 423

same as the default settings provided in MMAction 2 version 424

0.24.1. 425

5.3. Benchmark with Different Recognizers 426

For the benchmark evaluation with the three action recogniz- 427

ers SlowOnly, TPN and TS, the experiments were conducted in 428

the skeleton-only modality using a cross-subject data split and 429

the results are reported in top-1 and top-5 classification accura- 430

cies. Since no large-scale human action data with the pose key- 431

point structure is currently available for pre-training, we report 432

the results of training our classifiers from scratch in Table 3. 433

Our first evaluation was conducted to determine the bench- 434

mark performance of the recognizers on the NTU 120 dataset. 435

The results are given in the NTU 120 Test column of Table 3. 436

In this test, we trained each network using only the NTU 120 437

training data. Here, it is seen that TPN and SlowOnly have sim- 438

ilar results, as TPN outperforms SlowOnly by a slight margin. 439

However, the performance of TS is inferior, suggesting that it 440

Table 3: Test and validation results for the benchmark evaluation. The best
top-1 and top-5 accuracies for each dataset are highlighted in bold, same as the
fastest inference speed. Also, + NOVAction23 indicates that all NOVAction23
data is included in the training, while + ¼ NOVAction23 indicates that only a
quarter of the NOVAction23 data is included.

NTU 120

Test

NTU 20

Test

YouTube Action

Validation

Recognizer Trained On top-1 top-5 top-1 top-5 top-1 top-5 video/s

SlowOnly

NTU 120 0.84 0.97 0.25 0.66

3.3
NTU 20 0.95 0.99 0.40 0.89

NTU 20 + ¼ NOVAction23 0.96 0.99 0.67 0.94

NTU 20 + NOVAction23 0.96 0.99 0.75 0.97

TS

NTU 120 0.75 0.93 0.15 0.45

3.7
NTU 20 0.92 0.99 0.50 0.92

NTU 20 + ¼ NOVAction23 0.92 0.99 0.49 0.85

NTU 20 + NOVAction23 0.93 0.99 0.63 0.88

TPN

NTU 120 0.85 0.97 0.22 0.76

3.4
NTU 20 0.95 0.99 0.46 0.81

NTU 20 + ¼ NOVAction23 0.95 0.99 0.61 0.92

NTU 20 + NOVAction23 0.95 0.99 0.68 0.93
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Fig. 5: Top-1 accuracies of the NTU 20 test (left) and the YouTube Action validation (right). Color labels indicate training sets. Also, + NOVAction23 indicates
that all NOVAction23 data is included in the training, while + ¼ NOVAction23 indicates that only a quarter of the NOVAction23 data is included.

requires either more pre-training or additional training data in441

comparison.442

The second evaluation involves training the action recogni-443

tion models using only the 20 action classes that coexist in both444

the NTU 120 and NOVAction23 to determine whether training445

with the addition of the synthetic data generated by NOVAc-446

tion can improve the action recognition performance on the real447

test data from a well-known dataset. On the NTU 20 test data,448

the first set of results for each model was obtained by training449

with only the NTU 20 training data, while the second one was450

obtained by training with ¼ NOVAction23, i.e., a quarter of the451

NOVAction23 data, in addition to the NTU 20 training data, and452

the third one was obtained by training with all of the NOVAc-453

tion23 data in addition to the NTU 20 training data. The results454

are shown in Fig. 5 and in the NTU 20 Test column of Table 3.455

It can be seen that the addition of the synthetic training data456

slightly improves the top-1 and top-5 scores, which are already457

quite high without the addition. The best results are obtained458

with SlowOnly, closely followed by TPN.459

We conducted the third evaluation to assess the ability of NO-460

VAction23 to improve action recognition in-the-wild. For this,461

we validated our models with the YouTube Action data. The462

results are reported in Fig. 5 and the YouTube Action column463

of Table 3, which also includes inference speed. The most no-464

table finding is that using our synthetic data in addition to the465

real data in training increased the scores by a substantial mar-466

gin. This also implies that the pose extraction strategy proposed467

in [31] can also be used as a domain transformation method,468

since it allows synthetic video to directly improve inference ac-469

curacy on arbitrary videos without explicit pose information.470

In addition, TS performed best in terms of inference speed,471

but only provided decent accuracy on the YouTube Action set472

when all NOVAction23 data was used together with the NTU473

20 training data. TS was outperformed by TPN and SlowOnly,474

so further experiments are needed to decide whether TS can475

be effectively used for real-world skeleton-based human action476

recognition tasks.477

In previous studies [15, 16], both TPN and TS were reported478

to outperform SlowOnly in the tests performed on Kinetics 400479

with the RGB-only modality. However, in our experiments in-480

volving skeleton-based modality, SlowOnly achieved the high-481

est top-1 score in all data partitions except NTU 120. The re- 482

sults suggest that SlowOnly has superior generalization capa- 483

bilities even when working with small datasets. It is hypoth- 484

esized that this may be due to the complexity of the models 485

employed. When performing recognition on RGB videos, the 486

models use a large number of features compared to those based 487

on the skeleton modality. As such, they can benefit from more 488

complex architectures. Conversely, the skeleton-only modal- 489

ity does not require such complex architectures. In fact, us- 490

ing complex deep learning architectures for the skeleton-only 491

modality can be counterproductive, resulting in reduced accu- 492

racy. With large training datasets, TPN produces results compa- 493

rable to SlowOnly. In addition, TPN offers a modest improve- 494

ment in inference speed over SlowOnly. 495

Our findings demonstrate that augmenting the training data 496

with sequences exhibiting diverse motion characteristics cap- 497

tured from varied viewpoints improves action recognition per- 498

formance on real-world videos. It is evident that although the 499

models performed optimally on the NTU data, this does not 500

necessarily translate into recognition accuracy in the real world, 501

as observed in the YouTube Action validation results. Incorpo- 502

rating diverse synthetic data, in addition to real datasets such 503

as NTU 120, can yield improved classification accuracy in-the- 504

wild. Furthermore, it is also seen that using only a quarter of 505

NOVAction23 in addition to the NTU 20 test data did not pro- 506

vide tangible benefits compared to the scenario where we added 507

all of the NOVAction23 data. This suggests that for the best 508

action recognition performance on real-world videos, the en- 509

tire NOVAction23 dataset should be used in combination with 510

a real-world dataset. 511

5.4. Ablation Study 512

In this section, we present the results of our ablation study 513

using only the SlowOnly recognizer, which performed best in 514

the benchmark evaluation detailed above. For this evaluation, 515

SlowOnly was used with the pose estimator networks Faster R- 516

CNN [47] and HRNet [48] for the skeleton-only modality, and 517

without the pose estimator networks for the RGB-only modal- 518

ity. The same hardware setup was used as described in Sec- 519

tion 5.2. 520
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Lighting conditions can vary substantially between our in-521

door and outdoor 3D scenes. Global illumination was used522

in both settings to simulate sunlight, but its effect is less pro-523

nounced in the indoor scenes. Furthermore, environmental fac-524

tors such as cloud cover and time of day have minimal impact525

on local lighting conditions in the indoor scenes, which are pri-526

marily lit by multiple light sources in close proximity to the527

subject. The hue of the lighting in the indoor scenes is also528

similar to that of the NTU 120 videos. On the other hand, the529

lighting in the outdoor scenes is mainly influenced by global530

lighting at sunrise and midday, as well as street lighting in the531

night sequences. These light sources are farther away from the532

subject than those in the indoor scenes.533

Our first ablation study sought to examine the effects of534

these different lighting conditions on different data partitions535

of NOVAction23. To this end, we used seven different data536

partitions and trained a model in the RGB-only modality us-537

ing each partition for 15 epochs, after which changes in ac-538

curacy became mostly negligible. The NOVAction23 Indoor539

and NOVAction23 Outdoor partitions each consisted of 8000540

indoor and 8000 outdoor videos from NOVAction23, respec-541

tively. NOVAction23 Both consisted of 4000 indoor and 4000542

outdoor videos from NOVAction23, while NTU 20 (8k) con-543

sisted of 8000 videos from the NTU 20 training split. NOVAc-544

tion23 Indoor + NTU 20 consisted of 4000 videos from NO-545

VAction23 Indoor and 4000 videos from the NTU 20 training546

split. Similarly, NOVAction23 Outdoor + NTU 20 consisted547

of 4000 videos from NOVAction23 Outdoor and 4000 videos548

from the NTU 20 training split. Finally, NOVAction23 Both +549

NTU 20 consisted of 2000 videos from NOVAction23 Indoor,550

2000 videos from NOVAction Outdoor, and 4000 videos from551

the NTU 20 training split. With these splits, we ensured that all552

models were trained with a total of 8000 videos to avoid data553

imbalance. After training the models, we tested them on the en-554

tire NTU 20 test split and validated them on the entire YouTube555

Action set. The results are given in Table 4 and Fig. 6.556

Table 4: Results of the first ablation study, where we examine the effects of dif-
ferent illumination conditions of indoor and outdoor scenes of NOVAction23
on action recognition. The best accuracies achieved are given in bold. The
Mean column shows the average of the top-1 scores of the NTU 20 test and
the YouTube Action validation. In the Trained On column, next to the parti-
tion names, the amount of video taken from the designated source is shown in
brackets.

NTU 20

Test

YouTube Action

Validation
Mean

Trained On (Data Size) top-1 top-5 top-1 top-5 top-1

NOVAction23 Indoor (8k) 0.14 0.36 0.21 0.40 0.18

NOVAction23 Outdoor (8k) 0.14 0.42 0.36 0.67 0.25

NOVAction23 Both (4k Indoor + 4k Outdoor) 0.13 0.42 0.21 0.42 0.17

NTU 20 (8k) 0.41 0.66 0.26 0.61 0.34

NOVAction23 Indoor (4k) + NTU 20 (4k) 0.32 0.59 0.16 0.24 0.24

NOVAction23 Outdoor (4k) + NTU 20 (4k) 0.36 0.63 0.33 0.59 0.35

NOVAction23 Both (2k Indoor + 2k Outdoor) + NTU 20 (4k) 0.36 0.58 0.35 0.58 0.36

The results revealed that the outdoor videos from NOVAc-557

tion23 more closely resemble the lighting and overall realism558

of the real-world videos than its indoor videos. Accordingly,559

using only the outdoor videos from NOVAction23 substantially560

improved action recognition in the real-world videos. In ad-561
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Fig. 6: Top-1 accuracies of the first ablation study.

dition, NOVAction23 Outdoor outperformed NTU 20 (8k) in 562

recognizing actions in real-world videos. This can be attributed 563

in part to the fact that some actions in NTU 20 were poorly 564

performed by the actors. For instance, the side kick actions per- 565

formed in the NTU 20 videos were not executed with sufficient 566

accuracy, with the actors lifting their legs only slightly. For best 567

performance, the results suggest that both the indoor and out- 568

door videos from NOVAction23 should be used in conjunction 569

with other datasets. 570

In the second part, our goal was to compare the performance 571

of the RGB-only and skeleton-only modalities when trained 572

with our synthetic data. For both modalities, we used the entire 573

NOVAction23 data of the corresponding modality for training 574

for 30 epochs, as there was no significant improvement in accu- 575

racy thereafter. Both models were tested on the entire NTU 20 576

test data and validated on the entire YouTube Action set. The 577

results are given in Table 5. 578

Table 5: Results of the second ablation study, in which we compare the action
recognition performance of the RGB-only and Skeleton-only modalities when
trained with NOVAction23. The best accuracies achieved are given in bold. The
mean column shows the average of the top-1 scores of the NTU 20 test and the
YouTube Action validation.

NTU 20
Test

YouTube Action
Validation

Mean

Modality top-1 top-5 top-1 top-5 top-1
RGB-only 0.17 0.44 0.35 0.67 0.26

Skeleton-only 0.21 0.60 0.74 0.92 0.48

The second part of the ablation study showed that the model 579

trained in the skeleton-only modality outperformed the model 580

trained in the RGB-only modality. These results suggest that 581

skeleton-based classifiers should be considered for real-world 582

action recognition tasks. Additionally, it was observed that a 583

model trained exclusively with NOVAction23 performed excep- 584

tionally well on YouTube Action. 585

In the third part of our ablation study, the goal was to as- 586

sess the RGB-only generalization performance of the model, 587

which was pre-trained on Kinetics 400, by fine-tuning it with 588

NOVAction23. We compare this performance to fine-tuning 589

the same pre-trained model using another synthetically gener- 590

ated human action recognition dataset, SURREACT. For this 591
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purpose, we kept the same RGB-only training settings used592

in the previous test, but removed the five action classes (Side593

Kick, Squat, Yawn, Thumb Up, and Stretch) that are not shared594

by the two sets. Hence, the tests were carried out using the595

15 action classes that coexist in SURREACT, NTU 120 Test,596

and NOVAction23. For the same reason, we also removed two597

classes from YouTube Action, and validated with the remain-598

ing three classes (Stand Up, Jump, and Fall Down) that are599

also available on the aforementioned data partitions. Accord-600

ingly, we ended up with 9,346 sequences from SURREACT601

and 20,317 sequences from NOVAction23. To ensure balanced602

training with respect to the amount of data used, we trained603

NOVAction23 for 30 epochs and SURREACT for 65 epochs.604

The reason for using these epoch numbers is that NOVAction23605

contains approximately 2.17 times more video sequences than606

SURREACT in the specified classes. The results are given in607

Table 6.608

Table 6: Results of the third ablation study, where the Kinetics 400 pre-trained
model is fine-tuned with the NOVAction23 and SURREACT synthetic datasets
separately. The best accuracies achieved are given in bold. The mean column
shows the average of the top-1 scores of the NTU 20 test and the YouTube
Action validation.

NTU 20
Test

YouTube Action
Validation

Mean

Trained On top-1 top-5 top-1 top-5 top-1
NOVAction23 0.17 0.49 0.34 0.62 0.26
SURREACT 0.18 0.51 0.09 0.30 0.14

The last part revealed that the model trained with NOVAc-609

tion23 has a higher average accuracy. Even though SURRE-610

ACT employs identical pose sequences as NTU 20, it only611

slightly outperforms NOVAction23 on the NTU 20 test data.612

In contrast, NOVAction23 significantly outperforms SURRE-613

ACT on the YouTube Action validation. Overall, these results614

suggest that fine-tuning with NOVAction23 is more effective at615

generalization than fine-tuning with SURREACT, making NO-616

VAction23 a better candidate for augmenting real-world train-617

ing data in human action recognition tasks.618

6. Conclusion619

In this paper, we first introduced the NOVAction engine, a620

novel tool to automatically generate massively diverse and pho-621

torealistically synthetic human action datasets. NOVAction is622

capable of creating arbitrarily large amounts of unique action623

sequences, each performed by a distinct synthetic human gen-624

erated at runtime and captured from diverse camera views.625

Next, we presented the NOVAction23 dataset generated us-626

ing the NOVAction engine. NOVAction23 includes 25,415627

video sequences featuring 1,105 synthetic humans performing628

20 distinct action classes across five different 3D scenes from629

125 base viewpoints. Along with the video sequences, auto-630

matically generated precise pose and label information is also631

included. The NOVAction23 dataset offers a level of diver-632

sity that exceeds current state-of-the-art synthetic human action633

recognition datasets. We make this dataset publicly available at634

the paper website. In addition, we provide a video demonstrat- 635

ing sample action sequences from the NOVAction23 dataset in 636

comparison to those from the NTU 120 and Youtube Action 637

datasets as supplemental material. 638

To evaluate the efficacy of the NOVAction23 data in im- 639

proving recognition performance, we conducted a series of 640

benchmark tests using three state-of-the-art action recogniz- 641

ers (TS [15], TPN [16] and SlowOnly [17]), by training them 642

on both the NTU 120 and NOVAction23 datasets and subse- 643

quently validating their performance on videos collected from 644

YouTube. Our results indicated that training on the synthetic 645

NOVAction23 data in addition to the real data leads to improved 646

action recognition performance on real-world data, for which 647

SlowOnly outperforms the other recognizers. 648

We also conducted a three-part ablation study. In the first 649

part, where we evaluated the effects of lighting conditions using 650

RGB-only training, the results indicated that the outdoor videos 651

from NOVAction23 may be more similar to real-world videos in 652

terms of lighting and overall realism, while it is recommended 653

that both indoor and outdoor videos from NOVAction23 be used 654

in conjunction with other real-world datasets for best action 655

recognition performance. The second part, where we trained 656

with synthetic data only, showed that the skeleton-only modal- 657

ity outperformed the RGB-only modality. For the last part, we 658

compared NOVAction23 with SURREACT in RGB-only train- 659

ing performance, as both are synthetic datasets that aim to ad- 660

dress the problem of arbitrary-view human action recognition. 661

The model trained with NOVAction23 had better generaliza- 662

tion compared to SURREACT, illustrating the benefits of us- 663

ing more photorealistic data to train human action recognition 664

models and showing that NOVAction23 data is better suited to 665

address this problem. 666

Our experiments were limited to evaluating the image (RGB- 667

only) and pose (skeleton-only) modalities of the NOVAction23 668

dataset separately. In future work, it would provide valuable in- 669

sights to study the effects of using both modalities with training 670

architectures that employ them together. Another limitation was 671

the focus of the present evaluation on a set of 20 action classes 672

that are relatively more common than the other classes found 673

in real action datasets. Since the procedural animation system 674

of the NOVAction engine allows the use of arbitrary motion se- 675

quences, future work should benefit from the evaluation of an 676

even more extensive set of data created by using a larger num- 677

ber of action classes. 678

Although NOVAction23 provides varied action sequences 679

using 1,105 synthetic human actors with unique combinations 680

of attributes including gender, height, weight, skin tone, and 681

clothing, yielding an unprecedented level of diversity in an ac- 682

tion recognition dataset, there is potential to further expand this 683

diversity. The KIST SynADL dataset [12] provided syntheti- 684

cally generated data for the recognition of actions by elderly 685

subjects, yet, to our knowledge, no dataset has explicitly ad- 686

dressed the recognition of actions by infants or toddlers. Like- 687

wise, neither androgynous body types nor non-binary appear- 688

ances have been specifically addressed. Future efforts to in- 689

corporate additional synthetic data addressing such inadequate 690

representations would be beneficial to enhance recognition per- 691

https://graphics.cs.hacettepe.edu.tr/NOVAction/
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formance while still accounting for privacy concerns. In ad-692

dition, to increase the level of photorealism, an interesting re-693

search direction would be incorporating ray tracing -based post-694

processing approaches or utilizing generative models.695
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